From Modes to Movement in the Behavior of Caenorhabditis elegans

Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence of orientational memory in the intervals between abrupt turns. Building on recent work demonstrating that C. elegans movements are restricted to a low-dimensional shape space, we construct a map from the dynamics in this shape space to the trajectory of the worm along the agar. We use this connection to illustrate that changes in the continuous dynamics reveal subtle differences in movement strategy that occur among mutants defective in two classes of dopamine receptors.

[1]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[2]  Michael R Koelle,et al.  Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans , 2004, Nature Neuroscience.

[3]  J. F. Soechting,et al.  Postural Hand Synergies for Tool Use , 1998, The Journal of Neuroscience.

[4]  P. Cosman,et al.  Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes. , 2003, Genetics.

[5]  L. Ehrman,et al.  THE GENETICS OF BEHAVIOR , 1979 .

[6]  T D Sanger,et al.  Human Arm Movements Described by a Low-Dimensional Superposition of Principal Components , 2000, The Journal of Neuroscience.

[7]  S. Brenner,et al.  The genetics of behaviour. , 1973, British medical bulletin.

[8]  W. J. Bell Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .

[9]  W. Bialek,et al.  A sensory source for motor variation , 2005, Nature.

[10]  H. Berg Random Walks in Biology , 2018 .

[11]  R. P. Futrelle,et al.  Random Walks in Biology by H. C. Berg, Princeton University Press, 1983. £15.30 (ix + 142 pages) ISBN 0 691 08245 6 , 1985, Trends in Neurosciences.

[12]  Daniel Ramot,et al.  Thermotaxis is a Robust Mechanism for Thermoregulation in Caenorhabditis elegans Nematodes , 2008, The Journal of Neuroscience.

[13]  Aravinthan D. T. Samuel,et al.  Temporal analysis of stochastic turning behavior of swimming C. elegans. , 2009, Journal of neurophysiology.

[14]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[15]  S. Childress Mechanics of swimming and flying: Frontmatter , 1977 .

[16]  A. V. Maricq,et al.  Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans , 2004, The Journal of Neuroscience.

[17]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Wilczek,et al.  Geometry of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[19]  P. Cosman,et al.  Machine vision based detection of omega bends and reversals in C. elegans , 2006, Journal of Neuroscience Methods.

[20]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[21]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[22]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[23]  S. Lockery,et al.  The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. , 2006, Journal of neurophysiology.

[24]  F. Wilczek,et al.  Efficiencies of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[25]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[26]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[27]  F. Wilczek,et al.  Self-propulsion at low Reynolds number. , 1987, Physical review letters.

[28]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[29]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[30]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[31]  E. Bizzi,et al.  Low dimensionality of supraspinally induced force fields. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  I. Poletaeva,et al.  [The genetics of behavior]. , 2000, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.