Electromagnetic interference (EMI) disturbances coupled in the power supply of voltage and current references can severely degrade their performance, due to its finite power supply rejection (PSR). The design of a 90-dB PSR 4-dBm EMI-resistant NMOS-only voltage reference is herein presented. The voltage reference is designed based on the zero-temperature-coefficient transistor operating point. The high PSR is obtained using zero-<inline-formula> <tex-math notation="LaTeX">$V_{T}$</tex-math></inline-formula> transistors as active loads in the open and feedback loop of the circuit. Two versions, using standard <inline-formula><tex-math notation="LaTeX">$V_{T}$</tex-math> </inline-formula> and low-power <inline-formula><tex-math notation="LaTeX">$V_{T}$</tex-math></inline-formula> transistors, were designed in a 130-nm CMOS process. Both are designed using the same thermal compensation principle. The circuits occupy 0.014 and 0.006 mm<inline-formula><tex-math notation="LaTeX">$^{2}$</tex-math></inline-formula> of silicon area while consuming around 1.15 and 0.156<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula> W at 27 <inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math></inline-formula>C, respectively. Postlayout simulations present a reference voltage of 206 and 450 mV with an average temperature coefficient of 321 and 86 ppm/<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math></inline-formula>C (1000 samples), under a temperature range from <inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>55 to 125 <inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math></inline-formula>C. An EMI source of 4 dBm (1 <inline-formula><tex-math notation="LaTeX">$\text{V}_{\text{pp}}$</tex-math></inline-formula>) injected in the power supply, according to the direct power injection standard, yields <inline-formula><tex-math notation="LaTeX">$-$ </tex-math></inline-formula>0.17% and <inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula> 0.1<inline-formula><tex-math notation="LaTeX">${\%}$</tex-math></inline-formula> of the maximum dc shift and 822 and 950 <inline-formula><tex-math notation="LaTeX">$\mu \text{V}_{\text{pp}}$</tex-math></inline-formula> of the maximum peak-to-peak ripple for the standard <inline-formula><tex-math notation="LaTeX">$V_{T}$</tex-math></inline-formula> and low-power <inline-formula><tex-math notation="LaTeX">$V_{T}$</tex-math></inline-formula> implementations, respectively.
[1]
Pui-In Mak,et al.
A 104μW EMI-resisting bandgap voltage reference achieving −20dB PSRR, and 5% DC shift under a 4dBm EMI level
,
2014,
2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
[2]
L. Colalongo,et al.
Reduction of EMI Susceptibility in CMOS Bandgap Reference Circuits
,
2006,
IEEE Transactions on Electromagnetic Compatibility.
[3]
Sergio Bampi,et al.
MOSFET ZTC condition analysis for a self-biased current reference design
,
2015
.
[4]
I. Filanovsky,et al.
Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits
,
2001
.
[5]
Marcio Bender Machado,et al.
Ultra-Low-Voltage Operation of CMOS Analog Circuits: Amplifiers, Oscillators, and Rectifiers
,
2012,
IEEE Transactions on Circuits and Systems II: Express Briefs.
[6]
Jean-Michel Redouté,et al.
EMI Susceptibility of a Digitally Based Analog Amplifier in a 180-nm CMOS Process
,
2016,
IEEE Transactions on Electromagnetic Compatibility.
[7]
Sergio Bampi,et al.
EMI resisting MOSFET-Only Voltage Reference based on the ZTC condition
,
2015,
2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS).
[8]
Carlos Galup-Montoro,et al.
CMOS Analog Design Using All-Region MOSFET Modeling: Fundamentals of integrated continuous-time filters
,
2010
.
[9]
Michiel Steyaert,et al.
Kuijk Bandgap Voltage Reference With High Immunity to EMI
,
2010,
IEEE Transactions on Circuits and Systems II: Express Briefs.
[10]
Xing Zhou,et al.
Compact Zero-Temperature Coefficient Modeling Approach for MOSFETs Based on Unified Regional Modeling of Surface Potential
,
2013,
IEEE Transactions on Electron Devices.
[11]
Maryam Shojaei Baghini,et al.
Modeling and Design of EMI-Immune OpAmps in 0.18-$\mu$ m CMOS Technology
,
2016,
IEEE Transactions on Electromagnetic Compatibility.
[12]
Jean-Michel Redoute,et al.
Current mirror structure insensitive to conducted EMI
,
2005
.