Embedding ofl∞k in finite dimensional Banach spaces

AbstractLetx1,x2, ...,xn ben unit vectors in a normed spaceX and defineMn=Ave{‖Σi=1nε1xi‖:ε1=±1}. We prove that there exists a setA⊂{1, ...,n} of cardinality $$\left| A \right| \geqq \left[ {\sqrt n /\left( {2^7 M_n } \right)} \right]$$ such that {xi}i∈A is 16Mn-isomorphic to the natural basis ofl∞k. This result implies a significant improvement of the known results concerning embedding ofl∞k in finite dimensional Banach spaces. We also prove that for every ∈>0 there exists a constantC(∈) such that every normed spaceXn of dimensionn either contains a (1+∈)-isomorphic copy ofl2m for somem satisfying ln lnm≧1/2 ln lnn or contains a (1+∈)-isomorphic copy ofl∞k for somek satisfying ln lnk>1/2 ln lnn−C(∈). These results follow from some combinatorial properties of vectors with ±1 entries.

[1]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[2]  Daniel P. Giesy,et al.  On a convexity condition in normed linear spaces , 1966 .

[3]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[4]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[5]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[6]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[7]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[8]  Charles M. Newman,et al.  On uncomplemented subspaces ofLp, 1 , 1977 .

[9]  D. R. Lewis Finite dimensional subspaces of $L_{p}$ , 1978 .

[10]  Mark G. Karpovsky,et al.  Coordinate density of sets of vectors , 1978, Discret. Math..

[11]  Nicole Tomczak-Jaegermann,et al.  Projections onto Hilbertian subspaces of Banach spaces , 1979 .

[12]  Bela Bollobas,et al.  Graph theory , 1979 .

[13]  Peter Frankl Families of finite sets satisfying a union condition , 1979, Discret. Math..

[14]  V. Milman,et al.  Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .

[15]  William B. Johnson,et al.  Embeddinglpm intol1n , 1982 .

[16]  V. Milman Some remarks about embeddings ofl1k in finite-dimensional spaces , 1982 .

[17]  Noga Alon,et al.  On the density of sets of vectors , 1983, Discret. Math..