Iris detection using intensity and edge information

Abstract In this paper we propose a new algorithm to detect the irises of both eyes from a face image. The algorithm first detects the face region in the image and then extracts intensity valleys from the face region. Next, the algorithm extracts iris candidates from the valleys using the feature template of Lin and Wu (IEEE Trans. Image Process. 8 (6) (1999) 834) and the separability filter of Fukui and Yamaguchi (Trans. IEICE Japan J80-D-II (8) (1997) 2170). Finally, using the costs for pairs of iris candidates proposed in this paper, the algorithm selects a pair of iris candidates corresponding to the irises. The costs are computed by using Hough transform, separability filter and template matching. As the results of the experiments, the iris detection rate of the proposed algorithm was 95.3% for 150 face images of 15 persons without spectacles in the database of University of Bern and 96.8% for 63 images of 21 persons without spectacles in the AR database.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[3]  A. Martínez,et al.  The AR face databasae , 1998 .

[4]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Xiaobo Li,et al.  Towards a system for automatic facial feature detection , 1993, Pattern Recognit..

[6]  Hong Yan,et al.  Locating and extracting the eye in human face images , 1996, Pattern Recognit..

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Takeo Kanade,et al.  Recognizing upper face action units for facial expression analysis , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[12]  Osamu Yamaguchi,et al.  Facial Feature Point Extraction Method Based on Combination of Shape Extraction and Pattern Matching , 1998 .

[13]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[14]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[15]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[16]  Ja-Ling Wu,et al.  Automatic facial feature extraction by genetic algorithms , 1999, IEEE Trans. Image Process..

[17]  Rae-Hong Park,et al.  Recognition of human front faces using knowledge-based feature extraction and neurofuzzy algorithm , 1996, Pattern Recognit..

[18]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[19]  Osamu Yamaguchi,et al.  Facial feature point extraction method based on combination of shape extraction and pattern matching , 1998, Systems and Computers in Japan.

[20]  Alexander H. Waibel,et al.  A real-time face tracker , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[21]  David Beymer,et al.  Face recognition under varying pose , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.