The FMOS-COSMOS Survey of Star-forming Galaxies at z ∼ 1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies

We present a new data release from the Fiber Multi-Object Spectrograph (FMOS)-COSMOS survey, which contains the measurements of spectroscopic redshift and flux of rest-frame optical emission lines (H$\alpha$, [NII], [SII], H$\beta$, [OIII]) for 1931 galaxies out of a total of 5484 objects observed over the 1.7 deg$^2$ COSMOS field. We obtained $H$-band and $J$-band medium-resolution ($R\sim3000$) spectra with FMOS mounted on the Subaru telescope, which offers an in-fiber line flux sensitivity limit of $\sim 1 \times 10^{-17}~\mathrm{erg~s^{-1}~cm^{-2}}$ for an on-source exposure time of five hours. The full sample contains the main population of star-forming galaxies at $z\sim1.6$ over the stellar mass range $10^{9.5}\lesssim M_\ast/M_\odot \lesssim 10^{11.5}$, as well as other subsamples of infrared-luminous galaxies detected by Spitzer and Herschel at the same and lower ($z\sim0.9$) redshifts and X-ray emitting galaxies detected by Chandra. This paper presents an overview of our spectral analyses, a description of the sample characteristics, and a summary of the basic properties of emission-line galaxies. We use the larger sample to re-define the stellar mass--star formation rate relation based on the dust-corrected H$\alpha$ luminosity, and find that the individual galaxies are better fit with a parametrization including a bending feature at $M_\ast\approx10^{10.2}~M_\odot$, and that the intrinsic scatter increases with $M_\ast$ from 0.19 to $0.37$ dex. We also confirm with higher confidence that the massive ($M_\ast\gtrsim10^{10.5}~M_\odot$) galaxies are chemically mature as much as local galaxies with the same stellar masses, and that the massive galaxies have lower [SII]/H$\alpha$ ratios for their [OIII]/H$\beta$, as compared to local galaxies, which is indicative of enhancement in ionization parameter.

[1]  L. Kewley,et al.  REST-FRAME OPTICAL EMISSION LINES IN FAR-INFRARED-SELECTED GALAXIES AT z < 1.7 FROM THE FMOS-COSMOS SURVEY , 2015, 1505.03527.

[2]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[3]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[4]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[5]  J. Silverman,et al.  A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE , 2015, 1505.04977.

[6]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[7]  K. Schawinski,et al.  THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG , 2016, 1601.00941.

[8]  A. Cimatti,et al.  Predicting emission line fluxes and number counts of distant galaxies for cosmological surveys , 2017, 1709.01936.

[9]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. II. THE MASS–METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION , 2013, 1310.4950.

[10]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[11]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[12]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[13]  L. Kewley,et al.  THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.

[14]  Naoyuki Tamura,et al.  Fibre Multi-Object Spectrograph (FMOS) for the Subaru Telescope , 2010 .

[15]  J. Silverman,et al.  The Molecular Gas Content and Fuel Efficiency of Starbursts at z ∼ 1.6 with ALMA , 2018, The Astrophysical Journal.

[16]  O. Fèvre,et al.  The FMOS-COSMOS Survey of Star-forming Galaxies at Z ∼ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies , 2017, 1703.08326.

[17]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[18]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[19]  M. Giavalisco,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007 .

[20]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[21]  A. Coil,et al.  THE MOSDEF SURVEY: OPTICAL ACTIVE GALACTIC NUCLEUS DIAGNOSTICS AT z ∼ 2.3 , 2014, 1409.6522.

[22]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[23]  M. Fabricius,et al.  THE KMOS3D SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ z ⩽ 2.7 , 2014, 1409.6791.

[24]  A. M. Swinbank,et al.  The KMOS AGN Survey at High redshift (KASHz) : the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN , 2015, 1511.00008.

[25]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[26]  J. Trump,et al.  DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES , 2011, 1108.6061.

[27]  Y. Minowa,et al.  GALAXY FORMATION AT z > 3 REVEALED BY NARROWBAND-SELECTED [O III] EMISSION LINE GALAXIES , 2015, 1505.02410.

[28]  A. Strom,et al.  Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.

[29]  J. Silverman,et al.  The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations , 2017, 1703.04801.

[30]  M. Akiyama,et al.  FIBRE-Pac : FMOS Image-Based Reduction Package , 2011, 1111.6746.

[31]  B. Lundgren,et al.  DIRECT MEASUREMENTS OF DUST ATTENUATION IN z ∼ 1.5 STAR-FORMING GALAXIES FROM 3D-HST: IMPLICATIONS FOR DUST GEOMETRY AND STAR FORMATION RATES , 2013, 1310.4177.

[32]  L. Kewley,et al.  The COSMOS-[O ii] survey: evolution of electron density with star formation rate , 2016, 1611.01166.

[33]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[34]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[35]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[36]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[37]  Donald E. Osterbrock,et al.  Spectral Classification of Emission-Line Galaxies , 1987 .

[38]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[39]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[40]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[41]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[42]  L. Kewley,et al.  The ionization parameter of star-forming galaxies evolves with the specific star formation rate , 2018, 1804.10621.

[43]  A. Coil,et al.  THE MOSDEF SURVEY: EXCITATION PROPERTIES OF z ∼ 2.3 STAR-FORMING GALAXIES , 2014, 1409.7071.

[44]  J. Silverman,et al.  An FMOS Survey of Moderate-luminosity, Broad-line AGNs in COSMOS, SXDS, and E-CDF-S , 2018, The Astrophysical Journal Supplement Series.

[45]  D. Thompson,et al.  THE COSMOS-WIRCam NEAR-INFRARED IMAGING SURVEY. I. BzK-SELECTED PASSIVE AND STAR-FORMING GALAXY CANDIDATES AT z ≳ 1.4 , 2009, 0910.2705.

[46]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[47]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[48]  D. Elbaz,et al.  DISSECTING THE STELLAR-MASS–SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES , 2012, 1206.1704.

[49]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[50]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[51]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[52]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[53]  L. Pozzetti,et al.  Panchromatic spectral energy distributions of Herschel sources , 2013, 1301.4496.

[54]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[55]  K. Schawinski,et al.  A COMPARATIVE ANALYSIS OF VIRIAL BLACK HOLE MASS ESTIMATES OF MODERATE-LUMINOSITY ACTIVE GALACTIC NUCLEI USING SUBARU/FMOS , 2013, 1301.2332.

[56]  L. Kewley,et al.  THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS–METALLICITY RELATION , 2014, 1404.7526.

[57]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[58]  S. J. Lilly,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS , 2014, 1409.0447.

[59]  I. Smail,et al.  [O III] emission line as a tracer of star-forming galaxies at high redshifts: comparison between Hα and [O III] emitters at z=2.23 in HiZELS , 2016, 1607.02054.

[60]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[61]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[62]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 <~ z <~ 2.5 , 2004, astro-ph/0409041.

[63]  J. Trump,et al.  ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS–METALLICITY RELATION UP TO REDSHIFT z ∼ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION , 2014, 1403.6832.

[64]  Alison L. Coil,et al.  THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR ∼1500 H-SELECTED GALAXIES AT 1.37 ≤ z ≤ 3.8 ?> , 2014, 1412.1835.

[65]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[66]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[67]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[68]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[69]  I. Smail,et al.  Evolution of the H β + [O iii] and [O ii] luminosity functions and the [O ii] star formation history of the Universe up to z ∼ 5 from HiZELS , 2015, 1503.00004.

[70]  H. McCracken,et al.  Concurrent Starbursts in Molecular Gas Disks within a Pair of Colliding Galaxies at z = 1.52 , 2018, The Astrophysical Journal.

[71]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[72]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[73]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[74]  Physical properties of emission-line galaxies at z ∼ 2 from near-infrared spectroscopy with magellan fire , 2014, 1402.0510.

[75]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[76]  S. M. Fall,et al.  S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis , 2007, astro-ph/0701318.

[77]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM , 2016, 1604.06802.

[78]  C. Conselice,et al.  AEGIS: Star formation in field galaxies since z=1.1 . Dominance of gradually declining over episodic star formation , 2007 .

[79]  Alexie Leauthaud,et al.  Pixel-based correction for Charge Transfer Inefficiency in the Hubble Space Telescope Advanced Camera for Surveys , 2009, 0909.0507.

[80]  M. Dickinson,et al.  A NEW DIAGNOSTIC OF ACTIVE GALACTIC NUCLEI: REVEALING HIGHLY ABSORBED SYSTEMS AT REDSHIFT >0.3 , 2011, 1105.3194.

[81]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[82]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION , 2013, 1309.4774.

[83]  L. Kewley,et al.  A TURNOVER IN THE GALAXY MAIN SEQUENCE OF STAR FORMATION AT M* ∼ 1010 M☉ FOR REDSHIFTS z < 1.3 , 2015, 1501.01080.

[84]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[85]  D. Masters,et al.  SpecPro: An Interactive IDL Program for Viewing and Analyzing Astronomical Spectra , 2011, 1103.3222.

[86]  A. Cimatti,et al.  A multiwavelength consensus on the main sequence of star-forming galaxies at z ~ 2 , 2014, 1406.1189.

[87]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[88]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[89]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[90]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2002 .