Distributed diffusion-based LMS for node-specific parameter estimation over adaptive networks

A distributed adaptive algorithm is proposed to solve a node-specific parameter estimation problem where nodes are interested in estimating parameters of local interest and parameters of global interest to the whole network. To address the different node-specific parameter estimation problems, this novel algorithm relies on a diffusion-based implementation of different Least Mean Squares (LMS) algorithms, each associated with the estimation of a specific set of local or global parameters. Although all the different LMS algorithms are coupled, the diffusion-based implementation of each LMS algorithm is exclusively undertaken by the nodes of the network interested in a specific set of local or global parameters. To illustrate the effectiveness of the proposed technique we provide simulation results in the context of cooperative spectrum sensing in cognitive radio networks.

[1]  Sergios Theodoridis,et al.  Adaptive Robust Distributed Learning in Diffusion Sensor Networks , 2011, IEEE Transactions on Signal Processing.

[2]  Ioannis D. Schizas,et al.  Distributed LMS for Consensus-Based In-Network Adaptive Processing , 2009, IEEE Transactions on Signal Processing.

[3]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[4]  Ali H. Sayed,et al.  Incremental Adaptive Strategies Over Distributed Networks , 2007, IEEE Transactions on Signal Processing.

[5]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[6]  Ali H. Sayed,et al.  Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior , 2013, IEEE Signal Processing Magazine.

[7]  Marc Moonen,et al.  Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part II: Simultaneous and Asynchronous Node Updating , 2010, IEEE Transactions on Signal Processing.

[8]  Ali H. Sayed,et al.  Clustering via diffusion adaptation over networks , 2012, 2012 3rd International Workshop on Cognitive Information Processing (CIP).

[9]  Marc Moonen,et al.  Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part I: Sequential Node Updating , 2010, IEEE Transactions on Signal Processing.

[10]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[11]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[12]  Ali H. Sayed,et al.  Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm , 2010, IEEE Transactions on Signal Processing.

[13]  Ali H. Sayed,et al.  Bio-inspired swarming for dynamic radio access based on diffusion adaptation , 2011, 2011 19th European Signal Processing Conference.

[14]  Kostas Berberidis,et al.  Distributed incremental-based LMS for node-specific parameter estimation over adaptive networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[15]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[16]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[17]  Benoît Champagne,et al.  Diffusion LMS for source and process estimation in sensor networks , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[18]  Ali H. Sayed,et al.  Diffusion Adaptation over Networks , 2012, ArXiv.

[19]  Soummya Kar,et al.  Gossip Algorithms for Distributed Signal Processing , 2010, Proceedings of the IEEE.

[20]  Ali H. Sayed,et al.  Distributed pareto-optimal solutions via diffusion adaptation , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).