Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog.

We study the diffusion of tracers (self-diffusion) in a homogeneously cooling gas of dissipative particles, using the Green-Kubo relation and the Chapman-Enskog approach. The dissipative particle collisions are described by the coefficient of restitution epsilon which for realistic material properties depends on the impact velocity. First, we consider self-diffusion using a constant coefficient of restitution, epsilon=const, as frequently used to simplify the analysis. Second, self-diffusion is studied for a simplified (stepwise) dependence of epsilon on the impact velocity. Finally, diffusion is considered for gases of realistic viscoelastic particles. We find that for epsilon=const both methods lead to the same result for the self-diffusion coefficient. For the case of impact-velocity dependent coefficients of restitution, the Green-Kubo method is, however, either restrictive or too complicated for practical application, therefore we compute the diffusion coefficient using the Chapman-Enskog method. We conclude that in application to granular gases, the Chapman-Enskog approach is preferable for deriving kinetic coefficients.

[1]  C. Hrenya,et al.  Simulations of a binary-sized mixture of inelastic grains in rapid shear flow. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. M. J. van Leeuwen,et al.  Hard-sphere dynamics and binary-collision operators , 1969 .

[3]  M. J. Ruiz-Montero,et al.  Brownian motion in a granular gas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Spahn,et al.  Model for collisions in granular gases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  José María Montanero,et al.  Diffusion of impurities in a granular gas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Wildman,et al.  Coexistence of two granular temperatures in binary vibrofluidized beds. , 2002, Physical review letters.

[7]  T. Poeschel,et al.  Coefficient of normal restitution of viscous particles and cooling rate of granular gases , 1997, cond-mat/9711313.

[8]  Ricardo Brito,et al.  Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles , 2000 .

[9]  Irwin Oppenheim,et al.  ENERGY DISSIPATION FOR QUASIELASTIC GRANULAR PARTICLE COLLISIONS , 1997 .

[10]  Hiizu Nakanishi Velocity distribution of inelastic granular gas in a homogeneous cooling state. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Klebert Feitosa,et al.  Breakdown of energy equipartition in a 2D binary vibrated granular gas. , 2002, Physical review letters.

[12]  I. Goldhirsch,et al.  Green-Kubo relations for granular fluids , 2000 .

[13]  M. Shapiro,et al.  Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations , 1995, Journal of Fluid Mechanics.

[14]  M. J. Ruiz-Montero,et al.  Self-diffusion in freely evolving granular gases , 2000 .

[15]  Yutaka Tsuji,et al.  Direct numerical simulation of granular plug flow in a horizontal pipe. (The case of cohesionless particles.) , 1991 .

[16]  Germany,et al.  Simulations of pattern formation in vibrated granular media , 1996 .

[17]  E. Trizac,et al.  Lack of energy equipartition in homogeneous heated binary granular mixtures , 2002 .

[18]  M. H. Ernst,et al.  Extension of Haff's cooling law in granular flows , 1998 .

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  G. Kuwabara,et al.  Restitution Coefficient in a Collision between Two Spheres , 1987 .

[21]  James W Dufty,et al.  Kinetic temperatures for a granular mixture. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Nikolai V. Brilliantov,et al.  Deviation from Maxwell distribution in granular gases with constant restitution coefficient , 2000 .

[23]  T. Schwager,et al.  Coefficient of restitution of colliding viscoelastic spheres. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Thorsten Pöschel,et al.  Hydrodynamics and transport coefficients for dilute granular gases. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Brilliantov,et al.  Self-diffusion in granular gases , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Thorsten Pöschel,et al.  Kinetic Theory of Granular Gases , 2004 .

[27]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .

[28]  I. Goldhirsch,et al.  Clustering instability in dissipative gases. , 1993, Physical review letters.

[29]  M. J. Ruiz-Montero,et al.  Simulation study of the Green-Kubo relations for dilute granular gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  D. Lin,et al.  Structure, stability and evolution of Saturn's rings , 1984, Nature.

[31]  Andrea Puglisi,et al.  Mean-field model of free-cooling inelastic mixtures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Clément,et al.  Anomalous energy dissipation in molecular-dynamics simulations of grains: The "detachment" effect. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[34]  Sean McNamara,et al.  Hydrodynamic modes of a uniform granular medium , 1993 .

[35]  A Santos,et al.  Critical behavior of a heavy particle in a granular fluid. , 2001, Physical review letters.

[36]  Yu-qiang Ma,et al.  Simulation study on kinetic temperatures of vibrated binary granular mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Thorsten Pöschel,et al.  The granular phase diagram , 1997 .

[38]  E. Ben-Naim,et al.  Impurity in a Maxwellian unforced granular fluid , 2002, The European physical journal. E, Soft matter.

[39]  Xiaobo Nie,et al.  Dynamics of freely cooling granular gases. , 2002, Physical review letters.

[40]  James Lutsko,et al.  Diffusion in a granular fluid. I. Theory. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Jonathan Robert Dorfman,et al.  Nonanalytic dispersion relations in classical fluids: I. The hard-sphere gas , 1972 .

[42]  Brilliantov,et al.  Velocity distribution in granular gases of viscoelastic particles , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  M. Ernst,et al.  Velocity distributions in homogeneous granular fluids: the free and the heated case , 1998 .

[44]  A Santos,et al.  Nonequilibrium phase transition for a heavy particle in a granular fluid. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.