A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics

A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure of the implied volatility data and may result in a modelling bias. We propose a dynamic semiparametric factor model (DSFM), which approximates the IVS in a finite dimensional function space. The key feature is that we only fit in the local neighborhood of the design points. Our approach is a combination of methods from functional principal component analysis and backfitting techniques for additive models. The model is found to have an approximate 10% better performance than a sticky moneyness model. Finally, based on the DSFM, we devise a generalized vega-hedging strategy for exotic options that are priced in the local volatility framework. The generalized vega-hedging extends the usual approaches employed in the local volatility framework.

[1]  L. Bergomi Smile Dynamics I , 2004 .

[2]  P. Balland Deterministic implied volatility models , 2002 .

[3]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[4]  Joshua V. Rosenberg,et al.  Implied volatility functions: a reprise , 1999, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[5]  Gurdip Bakshi,et al.  Do Call Prices and the Underlying Stock Always Move in the Same Direction , 1999 .

[6]  C. Gouriéroux,et al.  DYNAMIC FACTOR MODELS , 2001 .

[7]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[8]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[9]  Yacine Aït-Sahalia,et al.  Do option markets correctly price the probabilities of movement of the underlying asset , 2001 .

[10]  Leif Andersen,et al.  The equity option volatility smile: an implicit finite-difference approach , 1997 .

[11]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[12]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[13]  Les Clewlow,et al.  The Dynamics of the S&P 500 Implied Volatility Surface , 2000 .

[14]  Oliver Brockhaus,et al.  Equity Derivatives and Market Risk Models , 2000 .

[15]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[16]  Wolfgang K. Härdle,et al.  The Dynamics of Implied Volatilities: A Common Principal Components Approach , 2003 .

[17]  M. Dempster,et al.  Pricing American Options Fitting the Smile , 2000 .

[18]  David S. Bates Dollar jump fears, 1984–1992: distributional abnormalities implicit in currency futures options , 1996 .

[19]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[20]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[21]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[22]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[23]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[24]  Matthias R. Fengler,et al.  Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface , 2003 .

[25]  M. Avellaneda,et al.  An E-Arch Model for the Term Structure of Implied Volatility of FX Options , 1997 .

[26]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[27]  M. Broadie,et al.  Série Scientifique Scientific Series Nonparametric Estimation of American Options Exercise Boundaries and Call Prices Nonparametric Estimation of American Options Exercise Boundaries and Call Prices * , 2022 .

[28]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[29]  C. J. Stone,et al.  The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .

[30]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[31]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[32]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[33]  Thomas M. Stoker,et al.  Goodness-of-fit tests for regression using kernel methods , 1994 .

[34]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[35]  Bruno Dupire Pricing with a Smile , 1994 .

[36]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[37]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[38]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[39]  Gregory Connor,et al.  Semiparametric Estimation of a Characteristic-Based Factor Model of Stock Returns , 2000 .

[40]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[41]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[42]  Toby Daglish,et al.  Volatility surfaces: theory, rules of thumb, and empirical evidence , 2007 .

[43]  L. Clewlow,et al.  The Dynamics of Implied Volatility Surfaces , 1998 .

[44]  R. Sundaram,et al.  Of Smiles and Smirks: A Term Structure Perspective , 1998, Journal of Financial and Quantitative Analysis.

[45]  Wolfgang Härdle,et al.  Common factors governing VDAX movements and the maximum loss , 2002 .

[46]  Peter Imkeller,et al.  A two state model for noise-induced resonance in bistable systems with delay , 2005 .

[47]  Carol Alexander Principles of the skew , 2003 .

[48]  W. Härdle,et al.  XploRe Learning Guide , 1999 .

[49]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[50]  M. Broadie,et al.  American options with stochastic dividends and volatility: A nonparametric investigation , 2000 .

[51]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[52]  H. Geman,et al.  Stochastic volatility and transaction time: an activity-based volatility estimator , 1999 .

[53]  R. Hafner,et al.  The Dynamics of DAX Implied Volatilities , 2000 .

[54]  Yacine Ait-Sahalia,et al.  Nonparametric Option Pricing Under Shape Restrictions , 2002 .

[55]  Jianqing Fan,et al.  Adaptive varying co-efficient linear models , 2003 .

[56]  Wolfgang K. Härdle,et al.  Robust estimation of dimension reduction space , 2006, Comput. Stat. Data Anal..