A system of one dimensional balls with gravity

We introduce a Hamiltonian system with many degrees of freedom for which the nonvanishing of (some) Lyapunov exponents almost everywhere can be established analytically.

[1]  L. Bunimovich Many-dimensional nowhere dispersing billiards with chaotic behavior , 1988 .

[2]  Robert L. Devaney,et al.  A piecewise linear model for the zones of instability of an area-preserving map , 1984 .

[3]  R. Markarian Billiards with Pesin region of measure one , 1988 .

[4]  Feliks Przytycki,et al.  Ergodicity of toral linked twist mappings , 1983 .

[5]  Y. Sinai Development Of Krylov’s Ideas , 1980 .

[6]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[7]  H. Lehtihet,et al.  Numerical study of a billiard in a gravitational field , 1986 .

[8]  Maciej P. Wojtkowski,et al.  Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.

[9]  V. Donnay Geodesic flow on the two-sphere, Part I: Positive measure entropy , 1988, Ergodic Theory and Dynamical Systems.

[10]  K. Burns Hyperbolic behaviour of geodesic flows on manifolds with no focal points , 1983, Ergodic Theory and Dynamical Systems.

[11]  R. Burton,et al.  Ergodicity of Linked Twist Maps , 2020, Hamiltonian Dynamical Systems.

[12]  M. Wojtkowski,et al.  A model problem with the coexistence of stochastic and integrable behaviour , 1981, Hamiltonian Dynamical Systems.

[13]  J. Strelcyn,et al.  Some new results on Robnik billiards , 1987 .

[14]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[15]  A. Knauf Ergodic and topological properties of coulombic periodic potentials , 1987 .

[16]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[17]  K. Burns,et al.  Real analytic Bernoulli geodesic flows on S2 , 1989, Ergodic Theory and Dynamical Systems.

[18]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[19]  R. Devaney Linked twist mappings are almost anosov , 1980 .

[20]  Marlies Gerber Conditional Stability and Real Analytic Pseudo-Anosov Maps , 1985 .

[21]  M. Wojtkowski,et al.  On the ergodic properties of piecewise linear perturbations of the twist map , 1982, Ergodic Theory and Dynamical Systems.

[22]  M. Wojtkowski,et al.  LINKED TWIST MAPPINGS HAVE THE K‐PROPERTY , 1980 .

[23]  M. Wojtkowski Linearly stable orbits in 3 dimensional billiards , 1990 .

[24]  W. Ballmann,et al.  On the ergodicity of geodesic flows , 1982, Ergodic Theory and Dynamical Systems.

[25]  F. Przytycki Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour , 1982, Ergodic Theory and Dynamical Systems.

[26]  Maciej P. Wojtkowski,et al.  Invariant families of cones and Lyapunov exponents , 1985, Ergodic Theory and Dynamical Systems.

[27]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[28]  Maciej P. Wojtkowski,et al.  Measure theoretic entropy of the system of hard spheres , 1988, Ergodic Theory and Dynamical Systems.

[29]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[30]  Y. Sinai,et al.  SOME SMOOTH ERGODIC SYSTEMS , 1967 .

[31]  Marko Robnik,et al.  Classical dynamics of a family of billiards with analytic boundaries , 1983 .