Quantum classification of the MNIST dataset via Slow Feature Analysis

Quantum machine learning carries the promise to revolutionize information and communication technologies. While a number of quantum algorithms with potential exponential speedups have been proposed already, it is quite difficult to provide convincing evidence that quantum computers with quantum memories will be in fact useful to solve real-world problems. Our work makes considerable progress towards this goal. We design quantum techniques for Dimensionality Reduction and for Classification, and combine them to provide an efficient and high accuracy quantum classifier that we test on the MNIST dataset. More precisely, we propose a quantum version of Slow Feature Analysis (QSFA), a dimensionality reduction technique that maps the dataset in a lower dimensional space where we can apply a novel quantum classification procedure, the Quantum Frobenius Distance (QFD). We simulate the quantum classifier (including errors) and show that it can provide classification of the MNIST handwritten digit dataset, a widely used dataset for benchmarking classification algorithms, with $98.5\%$ accuracy, similar to the classical case. The running time of the quantum classifier is polylogarithmic in the dimension and number of data points. We also provide evidence that the other parameters on which the running time depends (condition number, Frobenius norm, error threshold, etc.) scale favorably in practice, thus ascertaining the efficiency of our algorithm.

[1]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[2]  J. M. BoardmanAbstract,et al.  Contemporary Mathematics , 2007 .

[3]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[4]  Jeongho Bang,et al.  Optimal usage of quantum random access memory in quantum machine learning , 2018, Physical Review A.

[5]  Luming Duan,et al.  Quantum discriminant analysis for dimensionality reduction and classification , 2015, 1510.00113.

[6]  Liang Jiang,et al.  Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems. , 2019, Physical review letters.

[7]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[8]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[9]  Ashish Kapoor,et al.  Quantum Perceptron Models , 2016, NIPS.

[10]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[11]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[12]  Laurenz Wiskott,et al.  Learning invariance manifolds , 1998, Neurocomputing.

[13]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[14]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[15]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[16]  Laurenz Wiskott,et al.  Slow Feature Analysis: Perspectives for Technical Applications of a Versatile Learning Algorithm , 2012, KI - Künstliche Intelligenz.

[17]  Maris Ozols,et al.  Hamiltonian simulation with optimal sample complexity , 2016, npj Quantum Information.

[18]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[19]  Seth Lloyd,et al.  Quantum algorithms for topological and geometric analysis of data , 2016, Nature Communications.

[20]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[21]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[22]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[23]  Seth Lloyd,et al.  Quantum-inspired algorithms in practice , 2019, Quantum.

[24]  Laurenz Wiskott,et al.  Independent Slow Feature Analysis and Nonlinear Blind Source Separation , 2004, Neural Computation.

[25]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[26]  Laurenz Wiskott,et al.  Understanding Slow Feature Analysis: A Mathematical Framework , 2008 .

[27]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[28]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[29]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[30]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[31]  Henning Sprekeler,et al.  On the Relation of Slow Feature Analysis and Laplacian Eigenmaps , 2011, Neural Computation.

[32]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[33]  Francesco Petruccione,et al.  Circuit-Based Quantum Random Access Memory for Classical Data , 2019, Scientific Reports.

[34]  Lin Sun,et al.  DL-SFA: Deeply-Learned Slow Feature Analysis for Action Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Laurenz Wiskott,et al.  Slow feature analysis yields a rich repertoire of complex cell properties. , 2005, Journal of vision.

[36]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[37]  Ewin Tang,et al.  Quantum-inspired classical algorithms for principal component analysis and supervised clustering , 2018, ArXiv.

[38]  L.-M. Duan,et al.  Experimental realization of 105-qubit random access quantum memory , 2019, npj Quantum Information.

[39]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[40]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[41]  Hans-J. Briegel,et al.  Projective simulation with generalization , 2015, Scientific Reports.

[42]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[43]  Ashish Kapoor,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..

[44]  Sheng Wang,et al.  Supervised Slow Feature Analysis for Face Recognition , 2013, CCBR.

[45]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[46]  Seth Lloyd,et al.  Quantum computational finance: quantum algorithm for portfolio optimization , 2018, 1811.03975.

[47]  Anupam Prakash,et al.  Quantum algorithms for linear algebra and machine learning , 2014 .

[48]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[49]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[50]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[51]  Niko Wilbert,et al.  Slow feature analysis , 2011, Scholarpedia.

[52]  Dacheng Tao,et al.  Slow Feature Analysis for Human Action Recognition , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[54]  Iordanis Kerenidis,et al.  A Quantum Interior Point Method for LPs and SDPs , 2018, ACM Transactions on Quantum Computing.

[55]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[56]  Laurenz Wiskott,et al.  An extension of slow feature analysis for nonlinear blind source separation , 2014, J. Mach. Learn. Res..

[57]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[58]  P. Rebentrost,et al.  Quantum machine learning for quantum anomaly detection , 2017, 1710.07405.

[59]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[60]  P. Berkes Pattern Recognition with Slow Feature Analysis , 2005 .

[61]  Wolfgang Maass,et al.  Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks , 2009, NIPS.

[62]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[63]  Ahmed H. Sameh,et al.  Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.