Distributed Environment Framework for Optimization Experiments

Optimization studies often require very large computational resources to execute experiments. Furthermore, most of the time, the experiments are repetitions (same problem instances and same algorithm with the same parameters) that were carried out in past studies. In this work, we propose a framework for the execution of optimization experiments in a distributed environment and for the storage of the results as well as of the experimental conditions. The framework can support not only the organized execution of experiments but it also enables the reuse of the results in future studies.