Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6

We determine the maximum size $$A_2(8,6;4)$$A2(8,6;4) of a binary subspace code of packet length $$v=8$$v=8, minimum subspace distance $$d=6$$d=6, and constant dimension $$k=4$$k=4 to be 257. There are two isomorphism types of optimal codes. Both of them are extended LMRD codes. In finite geometry terms, the maximum number of solids in $${\text {PG}}(7,2)$$PG(7,2) mutually intersecting in at most a point is 257. The result was obtained by combining the classification of substructures with integer linear programming techniques. This result implies that the maximum size $$A_2(8,6)$$A2(8,6) of a binary mixed-dimension subspace code of packet length 8 and minimum subspace distance 6 is 257 as well.

[1]  Sascha Kurz,et al.  Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound , 2017, ICMCTA.

[2]  Tuvi Etzion,et al.  Galois geometries and coding theory , 2016, Des. Codes Cryptogr..

[3]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[4]  Sascha Kurz,et al.  An upper bound for binary subspace codes of length 8, constant dimension 4 and minimum distance 6 , 2017 .

[5]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.

[6]  Sascha Kurz,et al.  Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4 , 2014 .

[7]  Papa Sissokho,et al.  The maximum size of a partial spread in a finite projective space , 2016, J. Comb. Theory, Ser. A.

[8]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[9]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[10]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[11]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[12]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[13]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[14]  Sascha Kurz Packing vector spaces into vector spaces , 2017, Australas. J Comb..

[15]  Sascha Kurz,et al.  Classification of large partial plane spreads in $${{\,\mathrm{PG}\,}}(6,2)$$PG(6,2) and related combinatorial objects , 2018, Journal of Geometry.

[16]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[17]  Sascha Kurz Improved upper bounds for partial spreads , 2017, Des. Codes Cryptogr..

[18]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[19]  Sascha Kurz,et al.  Constructions and bounds for mixed-dimension subspace codes , 2015, Adv. Math. Commun..

[20]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[21]  Sascha Kurz,et al.  An improvement of the Johnson bound for subspace codes , 2017, ArXiv.

[22]  Sampo Niskanen,et al.  Cliquer user's guide, version 1.0 , 2003 .

[23]  Sascha Kurz,et al.  Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .

[24]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[25]  Sascha Kurz,et al.  Partial spreads and vector space partitions , 2016, 1611.06328.