Coefficients of Sylvester's Denumerant
暂无分享,去创建一个
Velleda Baldoni | Michèle Vergne | Matthias Köppe | Nicole Berline | Jesús A. De Loera | Brandon E. Dutra | J. D. Loera | M. Köppe | M. Vergne | V. Baldoni | N. Berline
[1] John Riordan,et al. Introduction to Combinatorial Analysis , 1959 .
[2] Alexander Barvinok,et al. Integer Points in Polyhedra , 2008 .
[3] Akimichi Takemura,et al. Computing holes in semi-groups and its applications to transportation problems , 2006, Contributions Discret. Math..
[4] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[5] Geir Agnarsson,et al. On the Sylvester Denumerants for General Restricted Partitions , 2022 .
[6] Matthias Köppe,et al. Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm , 2008, Electron. J. Comb..
[7] Doron Zeilberger,et al. Formulæ for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) , 2011, Adv. Appl. Math..
[8] Ramírez Alfonsin,et al. The diophantine frobenius problem , 2005 .
[9] A. Strzebonski,et al. FROBENIUS NUMBERS BY LATTICE POINT ENUMERATION , 2007 .
[10] Guoce Xin. A Fast Algorithm for MacMahon's Partition Analysis , 2004, Electron. J. Comb..
[11] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[12] Alexander I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..
[13] Jesús A. De Loera,et al. Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra , 2010, Found. Comput. Math..
[14] E. Ehrhart,et al. Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .
[15] W. Marsden. I and J , 2012 .
[16] Hans Kellerer,et al. Knapsack problems , 2004 .
[17] Ira M. Gessel,et al. The Polynomial Part of a Restricted Partition Function Related to the Frobenius Problem , 2001, Electron. J. Comb..
[18] Guoce Xin,et al. A Euclid style algorithm for MacMahon's partition analysis , 2012, J. Comb. Theory, Ser. A.
[19] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[20] A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .
[21] Arjen K. Lenstra,et al. Hard Equality Constrained Integer Knapsacks , 2004, Math. Oper. Res..
[22] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[23] M. Brion,et al. Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .
[24] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[25] E. T. Bell. Interpolated Denumerants and Lambert Series , 1943 .
[26] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[27] Martin E. Dyer,et al. On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..
[28] John Riordan,et al. Introduction to Combinatorial Analysis , 1958 .
[29] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[30] Velleda Baldoni,et al. Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory , 2010, ArXiv.