Coefficients of Sylvester's Denumerant

For a given sequence α = [α 1 , α 2 , . . . , α N +1 ] of N + 1 positive integers, we consider the combinatorial function E(α)(t) that counts the non-negative integer solutions of the equation α 1 x 1 + α 2 x 2 + · · · + α N x N + α N +1 x N +1 = t, where the right-hand side t is a varying non-negative integer. It is well-known that E(α)(t) is a quasi-polynomial function in the variable t of degree N . In combinatorial number theory this function is known as Sylvester's denumerant. Our main result is a new algorithm that, for every fixed number k, computes in polyno-mial time the highest k + 1 coefficients of the quasi-polynomial E(α)(t) as step polynomials of t (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for E(α)(t) and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinok's fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several compu-tational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.

[1]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[2]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[3]  Akimichi Takemura,et al.  Computing holes in semi-groups and its applications to transportation problems , 2006, Contributions Discret. Math..

[4]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[5]  Geir Agnarsson,et al.  On the Sylvester Denumerants for General Restricted Partitions , 2022 .

[6]  Matthias Köppe,et al.  Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm , 2008, Electron. J. Comb..

[7]  Doron Zeilberger,et al.  Formulæ for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) , 2011, Adv. Appl. Math..

[8]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[9]  A. Strzebonski,et al.  FROBENIUS NUMBERS BY LATTICE POINT ENUMERATION , 2007 .

[10]  Guoce Xin A Fast Algorithm for MacMahon's Partition Analysis , 2004, Electron. J. Comb..

[11]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[12]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[13]  Jesús A. De Loera,et al.  Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra , 2010, Found. Comput. Math..

[14]  E. Ehrhart,et al.  Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .

[15]  W. Marsden I and J , 2012 .

[16]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[17]  Ira M. Gessel,et al.  The Polynomial Part of a Restricted Partition Function Related to the Frobenius Problem , 2001, Electron. J. Comb..

[18]  Guoce Xin,et al.  A Euclid style algorithm for MacMahon's partition analysis , 2012, J. Comb. Theory, Ser. A.

[19]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[20]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[21]  Arjen K. Lenstra,et al.  Hard Equality Constrained Integer Knapsacks , 2004, Math. Oper. Res..

[22]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[23]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[24]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[25]  E. T. Bell Interpolated Denumerants and Lambert Series , 1943 .

[26]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[27]  Martin E. Dyer,et al.  On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..

[28]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[29]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[30]  Velleda Baldoni,et al.  Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory , 2010, ArXiv.