Reducing uncertainty in wind turbine blade health inspection with image processing techniques

.............................................................................................................................. vi CHAPTER 1. GENERAL INTRODUCTION .............................................................................. 1 1.1 Background ........................................................................................................................ 1 1.2 Motivation ......................................................................................................................... 2 1.3 Research Problem .............................................................................................................. 4 1.4 Research Objectives .......................................................................................................... 5 1.5 Impact ................................................................................................................................ 6 1.6 Dissertation Organization .................................................................................................. 7 1.7 References ......................................................................................................................... 7 CHAPTER 2. LITERATURE REVIEW .................................................................................... 10 2.1 Threshold-based image processing .................................................................................. 10 2.2 Uncertainty in threshold-based image processing ........................................................... 11 2.3 Automated crack recognition and classification .............................................................. 12 2.4 References ....................................................................................................................... 13 CHAPTER 3. FEASIBILITY OF AUTOMATIC DECTION OF SURFACE CRACKS IN WIND TURBINES BLADES....................................................................................................... 16 3.1 Abstract ............................................................................................................................ 16 3.2 Introduction ..................................................................................................................... 16 3.3 Methodology .................................................................................................................... 18 3.3.1 Synthetic crack generation ........................................................................................ 19 3.3.2 Line detection............................................................................................................ 22 3.3.3 Edge detection ........................................................................................................... 23

[1]  Lindsay Kleeman,et al.  Visual Perception and Robotic Manipulation - 3D Object Recognition, Tracking and Hand-Eye Coordination , 2006, Springer Tracts in Advanced Robotics.

[2]  R J E Hanson,et al.  Visual fatigue and eye strain in the use of telescopes , 1920 .

[3]  Michel Herbin,et al.  A 'no-threshold' histogram-based image segmentation method , 2002, Pattern Recognit..

[4]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[5]  Kevin Jiang Introduction , 2013, Nature Medicine.

[6]  Alan C. Bovik,et al.  Image information and visual quality , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Wei Tsang Ooi,et al.  Video quality for face detection, recognition, and tracking , 2011, TOMCCAP.

[8]  Atif Bin Mansoor,et al.  A New Approach to Aircraft Surface Inspection Based on Directional Energies of Texture , 2010, 2010 20th International Conference on Pattern Recognition.

[9]  Rongchun Zhao,et al.  Image segmentation by clustering of spatial patterns , 2007, Pattern Recognit. Lett..

[10]  Cordelia Schmid,et al.  Accurate Object Recognition with Shape Masks , 2012, International Journal of Computer Vision.

[11]  Yong Man Ro,et al.  Face Feature Weighted Fusion Based on Fuzzy Membership Degree for Video Face Recognition , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  George Marsh Meeting the challenge of wind turbine blade repair , 2011 .

[13]  Laurent Mouchard,et al.  Dealing with uncertainty and imprecision in image segmentation using belief function theory , 2014, Int. J. Approx. Reason..

[14]  Sondre Høglund Autonomous Inspection of Wind Turbines and Buildings using an UAV , 2014 .

[15]  Marcelo Reggio,et al.  Issues concerning roughness on wind turbine blades , 2013 .

[16]  Prasanta K. Panigrahi,et al.  Multilevel thresholding for image segmentation through a fast statistical recursive algorithm , 2006, Pattern Recognit. Lett..

[17]  Ioannis Pitas,et al.  Digital image processing techniques for the detection and removal of cracks in digitized paintings , 2006, IEEE Transactions on Image Processing.

[18]  A. G. Dutton,et al.  Acoustic Emission Monitoring of Small Wind Turbine Blades , 2002 .

[19]  Ben Taskar,et al.  Shape-Based Object Detection via Boundary Structure Segmentation , 2012, International Journal of Computer Vision.

[20]  Wen Gao,et al.  Thresholding technique with adaptive window selection for uneven lighting image , 2005, Pattern Recognit. Lett..

[21]  G. S. Robinson Edge detection by compass gradient masks , 1977 .

[22]  Martin Stokkeland,et al.  A Computer Vision Approach for Autonomous Wind Turbine Inspection using a Multicopter , 2014 .

[23]  M. J. Blanch,et al.  Acoustic Emission Monitoring of Field Tests of an Operating Wind Turbine , 2003 .

[24]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[25]  Modeling crack propagation in wood and wood composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[26]  Wolfgang Ecke,et al.  A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade , 2005, International Conference on Optical Fibre Sensors.

[27]  Ching Y. Suen,et al.  A recursive thresholding technique for image segmentation , 1998, IEEE Trans. Image Process..

[28]  Iñaki Inza,et al.  Learning Bayesian network classifiers from label proportions , 2013, Pattern Recognit..

[29]  Mel Siegel,et al.  Remote Enhanced Visual Inspection of Aircraft by a Mobile Robot , 1998 .

[30]  Patrick J. Flynn,et al.  Face Recognition from Video: a Review , 2012, Int. J. Pattern Recognit. Artif. Intell..

[31]  C. P. Debel,et al.  Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) - Summary Report , 2004 .

[32]  John K. Jackman,et al.  Feasibility of Automatic Detection of Surface Cracks in Wind Turbine Blades , 2014 .

[33]  R. Carriveau,et al.  A review of surface engineering issues critical to wind turbine performance , 2009 .

[34]  Brijesh N Shah,et al.  Implementation of Image Segmentation on Digital Images Using Modified Otsu Algorithm , 2012 .

[35]  C. H. Chen,et al.  Digital Image Processing: An Algorithmic Approach with MATLAB , 2009 .

[36]  P H Bartels,et al.  Self-optimizing, self-learning system in pictorial pattern recognition. , 1970, Applied optics.

[37]  Huiyi Zhang,et al.  A feasibility study of wind turbine blade surface crack detection using an optical inspection method , 2013, 2013 International Conference on Renewable Energy Research and Applications (ICRERA).

[38]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[39]  Thomas D. Ashwill,et al.  Cost Study for Large Wind Turbine Blades , 2003 .

[40]  Gunjit Bir,et al.  Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades , 2001 .

[41]  X. Zhang,et al.  Quantification of Extensional Uncertainty of Segmented Image Objects by Random Sets , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Richard C. Staunton,et al.  A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns , 2007, Pattern Recognit..

[43]  M. E. Ibrahim Nondestructive evaluation of thick-section composites and sandwich structures: A review , 2014 .

[44]  Marvin Trimm,et al.  An overview of nondestructive evaluation methods , 2003 .

[45]  Lina Bertling,et al.  An Approach for Condition-Based Maintenance Optimization Applied to Wind Turbine Blades , 2010, IEEE Transactions on Sustainable Energy.

[46]  Sung-Hoon Ahn,et al.  Condition monitoring and fault detection of wind turbines and related algorithms: A review , 2009 .