Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data

We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg2 region in five bins of photometric redshift width Deltaz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Lambda cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with chi2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a `linear bias' model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 per cent accuracy down to scales at least 4-10 times smaller than those on which linear theory is expected to be sufficient.

R. J. Brunner | C. B. D'Andrea | D. A. Finley | D. W. Gerdes | D. J. James | M. Soares-Santos | H. T. Diehl | E. Buckley-Geer | K. Honscheid | D. Brooks | M. Schubnell | G. Tarle | E. Bertin | R. A. Gruendl | G. M. Bernstein | A. K. Romer | I. Sevilla-Noarbe | R. C. Nichol | M. Banerji | A. Carnero Rosell | L. N. da Costa | S. Desai | T. F. Eifler | A. Fausti Neto | J. Frieman | D. Gruen | K. Kuehn | N. Kuropatkin | O. Lahav | M. A. G. Maia | M. March | J. L. Marshall | P. Martini | B. Nord | R. Ogando | A. A. Plazas | E. Sanchez | F. Sobreira | E. Suchyta | M. E. C. Swanson | B. Flaugher | R. H. Wechsler | B. Leistedt | F. B. Abdalla | A. E. Evrard | B. Santiago | J. Zuntz | D. Capozzi | P. Melchior | F. J. Castander | P. Fosalba | R. Miquel | T. Giannantonio | M. Carrasco Kind | J. Carretero | G. Gutierrez | A. R. Walker | C. Bonnett | E. Neilsen | S. Allam | M. Crocce | V. Vikram | D. Thomas | R. Nichol | D. Gerdes | J. Frieman | O. Lahav | R. Brunner | W. Percival | F. Castander | P. Fosalba | J. Weller | F. Abdalla | D. Capozzi | A. Rosell | L. Costa | K. Honscheid | M. Maia | R. Ogando | A. Ross | E. Rykoff | B. Santiago | F. Sobreira | M. Swanson | C. Bonnett | G. Bernstein | M. Banerji | Peter Melchior | M. Kind | R. Gruendl | W. Hartley | H. Peiris | M. Sako | S. Allam | H. Diehl | I. Sevilla-Noarbe | R. Wechsler | E. Bertin | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | S. Desai | T. Eifler | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. James | K. Kuehn | N. Kuropatkin | M. Lima | J. Marshall | R. Miquel | E. Neilsen | A. Plazas | A. Romer | M. Schubnell | R. Smith | E. Suchyta | G. Tarlé | A. Walker | J. Zuntz | A. F. Neto | M. Soares-Santos | M. March | E. Sánchez | A. Benoit-Lévy | D. Finley | T. Giannantonio | P. Martini | C. Miller | B. Nord | J. Thaler | D. Thomas | V. Vikram | A. Bauer | R. Cawthon | T. Li | C. Sánchez | B. Leistedt | T. Abbott | E. Fernandez | R. Rosenfeld | D. L. Burke | C. E. Cunha | E. Fernandez | E. Gaztanaga | M. Lima | A. J. Ross | E. S. Rykoff | J. Weller | A. Benoit-Levy | H. V. Peiris | W. J. Percival | W. Hartley | C. Sanchez | T. Abbott | A. H. Bauer | C. J. Miller | M. Sako | R. C. Smith | J. Thaler | R. Cawthon | T. S. Li | R. Rosenfeld | J. Sánchez | E. Kim | J. Sanchez | E. J. Kim | M. C. Kind | A. C. Rosell | J. Marshall | C. Miller | A. F. Neto | R. Smith | T. Li | T. Li | T. Li | E. Fernandez | M. Swanson | R. C. Smith | Risa Wechsler

[1]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[2]  B. Weiner,et al.  The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South† , 2011, 1112.0312.

[3]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[4]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[5]  M. Crocce,et al.  Modelling the angular correlation function and its full covariance in photometric galaxy surveys , 2010, 1004.4640.

[6]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[7]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[8]  G. Zamorani,et al.  Photometric redshifts for the CFHTLS T0004 deep and wide fields , 2008, 0811.3326.

[9]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[10]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[11]  R. Brunner,et al.  Halo-model analysis of the clustering of photometrically selected galaxies from SDSS , 2009, 0906.4977.

[12]  H. Thomas Diehl,et al.  The Dark Energy Survey Camera (DECam) , 2012 .

[13]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[14]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[15]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[16]  L. Costa,et al.  PreCam: A Precursor Observational Campaign for Calibration of the Dark Energy Survey , 2012, 1208.0865.

[17]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[18]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[19]  Ramon Miquel,et al.  Photo-z quality cuts and their effect on the measured galaxy clustering , 2013, 1308.6500.

[20]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – I. Growth of structure and baryon acoustic feature , 2011, 1104.5236.

[21]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[22]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[23]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[24]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[25]  F. Castander,et al.  The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps , 2013, 1312.2947.

[26]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[27]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[28]  Ashley J. Ross,et al.  CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS , 2012, 1201.2137.

[29]  Pablo Fosalba,et al.  Error analysis in cross‐correlation of sky maps: application to the Integrated Sachs–Wolfe detection , 2007, astro-ph/0701393.

[30]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – II. Cosmological implications from the baryon acoustic scale , 2011, 1104.5426.

[31]  Boris Leistedt,et al.  Estimating the large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital Sky Survey quasars , 2013, 1306.0005.

[32]  C. Stubbs,et al.  STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS , 2009, 0903.5302.

[33]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[34]  E. Gaztañaga,et al.  Combining spectroscopic and photometric surveys using angular cross-correlations – I. Algorithm and modelling , 2014, 1412.2208.

[35]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[36]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[37]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[38]  Shaun A. Thomas,et al.  Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey. , 2009, Physical review letters.

[39]  Patrick McDonald Clustering of dark matter tracers: Renormalizing the bias parameters , 2006 .

[40]  S. Klein Astronomy and astrophysics with , 2008 .

[41]  W. Percival,et al.  Measuring redshift-space distortions using photometric surveys , 2011, 1102.0968.

[42]  Karl Glazebrook,et al.  An imaging K-band survey - I: The catalogue, star and galaxy counts , 1994 .

[43]  Craig Loomis,et al.  Hyper Suprime-Cam , 2012, Other Conferences.

[44]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[45]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[46]  Emmanuel Bertin,et al.  The Dark Energy Survey data processing and calibration system , 2012, Other Conferences.

[47]  F. Castander,et al.  The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.

[48]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[49]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[50]  F. J. Castander,et al.  The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.

[51]  L. Costa,et al.  Large-scale analysis of the SDSS-III DR8 photometric luminous galaxies angular correlation function , 2013, 1308.0630.

[52]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[53]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[54]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[55]  Princeton University,et al.  LSST: a complementary probe of dark energy , 2002 .

[56]  F. Castander,et al.  An algorithm to build mock galaxy catalogues using MICE simulations , 2014, 1411.3286.

[57]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[58]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[59]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[60]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts , 2012, 1206.0943.

[61]  R. J. Brunner,et al.  Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs , 2014, 1403.0044.

[62]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[63]  B. Flaugher The Dark Energy Survey , 2005 .

[64]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[65]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[66]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[67]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[68]  R. Wilson Modern Cosmology , 2004 .

[69]  John L. Tonry,et al.  A New Strategy for Deep Wide‐Field High‐Resolution Optical Imaging , 2000 .