Multiscale simulations of primary atomization

A liquid jet upon atomization breaks up into small droplets that are orders of magnitude smaller than its diameter. Direct numerical simulations of atomization are exceedingly expensive computationally. Thus, the need to perform multiscale simulations. In the present study, we performed multiscale simulations of primary atomization using a Volume-of-Fluid (VOF) algorithm coupled with a two-way coupling Lagrangian particle-tracking model to simulate the motion and influence of the smallest droplets. Collisions between two particles are efficiently predicted using a spatial-hashing algorithm. The code is validated by comparing the numerical simulations for the motion of particles in several vortical structures with analytical solutions. We present simulations of the atomization of a liquid jet into droplets which are modeled as particles when away from the primary jet. We also present the probability density function of the droplets thus obtained and show the evolution of the PDF in space.

[1]  Fares Ben Rayana Contribution à l'étude des instabilités interfaciales liquide-gaz en atomisation assistée et taille de gouttes , 2007 .

[2]  A stochastic droplet collision model with consideration of impact efficiency , 2002 .

[3]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[4]  Eiji Ishii,et al.  Hybrid Particle/Grid Method for Predicting Motion of Micro- and Macrofree Surfaces , 2006 .

[5]  Felix Otto,et al.  Multiscale simulations for suspensions of rod-like molecules , 2006, J. Comput. Phys..

[6]  A. Cartellier,et al.  Gas-liquid atomisation: gas phase characteristics by PIV measurements and spatial evolution of the spray , 2008 .

[7]  S. Zaleski,et al.  Numerical simulation of droplets, bubbles and waves: state of the art , 2009 .

[8]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[9]  Britt Halvorsen,et al.  Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed , 2005, Comput. Chem. Eng..

[10]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[11]  Pascal Ray,et al.  Simulation of primary atomization with an octree adaptive mesh refinement and VOF method , 2009 .

[12]  Eric David Perkins,et al.  Spatial reasoning for generalized N-body physics : discrete element algorithms , 1999 .

[13]  M. Maxey,et al.  Simulation of Interactions Between Microbubbles and Turbulent Flows , 1994 .

[14]  S. Elghobashi,et al.  Direct simulation of particle dispersion in a decaying isotropic turbulence , 1992, Journal of Fluid Mechanics.

[15]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[16]  T. Ménard,et al.  Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet , 2007 .

[17]  G. Son,et al.  Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling , 2002 .

[18]  Rolf D. Reitz,et al.  A new predictive model for fragmenting and non-fragmenting binary droplet collisions , 2007 .

[19]  E. Climenta Dynamics of a two-dimensional upflowing mixing layer seeded with bubbles : Bubble dispersion and effect of two-way coupling , 2006 .

[20]  I. Eames,et al.  The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows , 2000 .

[21]  E. Climent,et al.  Two-way coupling simulations of instabilities in a plane bubble plume , 2003 .

[22]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[23]  T. R. Auton,et al.  The lift force on a spherical body in a rotational flow , 1987, Journal of Fluid Mechanics.

[24]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[25]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[26]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[27]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[28]  Marcus Herrmann,et al.  A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure , 2010, J. Comput. Phys..

[29]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[30]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[31]  Hiroki Hasegawa,et al.  Macro-micro Interlocked Simulation for Multiscale Phenomena , 2007, International Conference on Computational Science.

[32]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[33]  D. Lohse Particles go with the flow , 2008 .

[34]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[35]  On the effects of microbubbles on Taylor–Green vortex flow , 2005, Journal of Fluid Mechanics.

[36]  Vladimir Kolobov,et al.  Coupling Atomistic and Continuum Models for Multi-scale Simulations of Gas Flows , 2007, International Conference on Computational Science.

[37]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[38]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[39]  Isao Kataoka,et al.  Local instant formulation of two-phase flow , 1986 .

[40]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[41]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[42]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[43]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[44]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[45]  Jie Li,et al.  Calcul d'Interface Affine par Morceaux , 1995 .

[46]  Jam Hans Kuipers,et al.  Numerical simulation of gas-liquid-solid flows using a combined front tracking and discrete particle method , 2005 .

[47]  J. Eaton,et al.  Classification of turbulence modification by dispersed spheres using a novel dimensionless number. , 2008, Physical review letters.

[48]  Dominique Legendre,et al.  The lift force on a spherical bubble in a viscous linear shear flow , 1998, Journal of Fluid Mechanics.

[49]  S. Zaleski,et al.  Flows with Interfaces: dealing with surface tension and reconnection , 1996 .

[50]  Parviz Moin,et al.  The breakup of a round liquid jet by a coaxial flow of gas using the Refined Level Set Grid Method , 2006 .

[51]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[52]  Eugenio Aulisa,et al.  Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry , 2007, J. Comput. Phys..