Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions

In order to avoid unphysical causality-violating effects any rigidly rotating system must be bounded in directions transverse to the axis of rotation. We demonstrate that this requirement implies substantial dependence of properties of relativistically rotating system on the boundary conditions. We consider a system of interacting fermions described by the Nambu-Jona-Lasinio model in a space bounded by cylindrical surface of finite radius. In order to confine the fermions inside the cylinder we impose "chiral" MIT boundary conditions on its surface. These boundary conditions are parameterized by a continuous chiral angle \Theta. We find that at any value of \Theta the chiral restoration temperature T_c decreases as a quadratic function of the angular frequency \Omega. However, the position and the slope of the critical curve T_c = T_c(\Omega) in the phase diagram depends noticeably on the value of the chiral angle.

[1]  S. Gongyo,et al.  Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics , 2016, Journal of High Energy Physics.

[2]  K. Fukushima,et al.  Boundary effects and gapped dispersion in rotating fermionic matter , 2016, 1608.00336.

[3]  J. Liao,et al.  Pairing Phase Transitions of Matter under Rotation. , 2016, Physical review letters.

[4]  B. McInnes A rotation/magnetism analogy for the quark–gluon plasma , 2016, 1604.03669.

[5]  W. Deng,et al.  Vorticity in heavy-ion collisions , 2016, 1603.06117.

[6]  Zi-Wei Lin,et al.  Rotating quark-gluon plasma in relativistic heavy ion collisions , 2016, 1602.06580.

[7]  K. Fukushima,et al.  Analogy between rotation and density for Dirac fermions in a magnetic field , 2015, 1512.08974.

[8]  Victor E. Ambruş,et al.  Rotating fermions inside a cylindrical boundary , 2015, 1512.05239.

[9]  Adrian Manning Fermions in Rotating Reference Frames , 2015, 1512.00579.

[10]  B. McInnes Inverse magnetic/shear catalysis , 2015, 1511.05293.

[11]  N. Yamamoto Chiral transport of neutrinos in supernovae: Neutrino-induced fluid helicity and helical plasma instability , 2015, 1511.00933.

[12]  F. Becattini,et al.  A study of vorticity formation in high energy nuclear collisions , 2015, 1501.04468.

[13]  M. Bleicher,et al.  Anomalous hydrodynamics kicks neutron stars , 2014, 1410.3833.

[14]  B. McInnes Angular Momentum in QGP Holography , 2014, 1403.3258.

[15]  E. Winstanley,et al.  Rotating quantum states , 2014, 1401.6388.

[16]  A. Grushin,et al.  Condensed matter realization of the axial magnetic effect , 2013, 1311.0878.

[17]  K. Landsteiner Anomalous transport of Weyl fermions in Weyl semimetals , 2013, 1306.4932.

[18]  D. Kharzeev,et al.  Triangle anomaly in Weyl semimetals , 2013, 1305.6338.

[19]  Yuji Hirono,et al.  Lattice QCD in rotating frames. , 2013, Physical review letters.

[20]  L. Csernai,et al.  Flow Vorticity in Peripheral High Energy Heavy Ion Collisions , 2013, 1302.5310.

[21]  L. Tinti,et al.  Thermodynamical inequivalence of quantum stress-energy and spin tensors , 2011, 1101.5251.

[22]  D. Son,et al.  Hydrodynamics with triangle anomalies. , 2009, Physical review letters.

[23]  F. Piccinini,et al.  The ideal relativistic spinning gas: polarization and spectra , 2007, 0710.5694.

[24]  D. Son,et al.  Quantum anomalies in dense matter , 2004 .

[25]  A. Ottewill,et al.  Rotating quantum thermal distribution , 2002, hep-th/0211096.

[26]  V. Lorenci,et al.  A Rotating Quantum Vacuum , 1996, hep-th/9612006.

[27]  S. Stringari,et al.  Moment of inertia and superfluidity of a trapped Bose gas. , 1995, Physical review letters.

[28]  Stuart L. Shapiro,et al.  Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State , 1993 .

[29]  Y. Peleg,et al.  Unruh effect for circular motion in a cavity , 1993 .

[30]  B. Iyer Dirac field theory in rotating coordinates , 1982 .

[31]  A. Vilenkin MACROSCOPIC PARITY VIOLATING EFFECTS: NEUTRINO FLUXES FROM ROTATING BLACK HOLES AND IN ROTATING THERMAL RADIATION , 1979 .

[32]  A. Vilenkin Parity violating currents in thermal radiation , 1978 .

[33]  J. R. Schrieffer,et al.  Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity , 2011 .