The Boolean Solution Problem from the Perspective of Predicate Logic (Abstract)

Finding solution values for unknowns in Boolean equations was a principal reasoning mode in the Algebra of Logic of the 19th century. Schroder investigated it as Auflosungsproblem (solution problem). It is closely related to the modern notion of Boolean unification. Today it is commonly presented in an algebraic setting, but seems potentially useful also in knowledge representation based on predicate logic. We show that it can be modeled on the basis of first-order logic extended by second-order quantification. A wealth of classical results transfers, foundations for algorithms unfold, and connections with second-order quantifier elimination and Craig interpolation show up.

[1]  Armin Biere,et al.  qbf2epr: A Tool for Generating EPR Formulas from QBF , 2013, PAAR@IJCAR.

[2]  Daniel Weller,et al.  Boolean unification with predicates , 2017, J. Log. Comput..

[3]  Frank Wolter,et al.  Spatial logics with connectedness predicates , 2010, Log. Methods Comput. Sci..

[4]  C. Siegel Vorlesungen über die Algebra der Logik , 1907 .

[5]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[6]  Viktor Kuncak,et al.  Disjunctive Interpolants for Horn-Clause Verification , 2013, CAV.

[7]  Gabriel M. Kuper,et al.  Constraint query languages (preliminary report) , 1990, PODS '90.

[8]  Franz Baader,et al.  Unification in the Description Logic EL , 2009, Description Logics.

[9]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[10]  Edmund Husserl,et al.  E. Schröder, Vorlesungen über die Algebra der Logik (Exakte Logik), I. Band, Leipzig 1890 (1891) , 1979 .

[11]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[12]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[13]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[14]  Renate A. Schmidt,et al.  Concept Forgetting for ALCOI-Ontologies using an Ackermann Approach , 2015, Description Logics.

[15]  Tobias Nipkow,et al.  Unification in Boolean rings , 1986, Journal of Automated Reasoning.

[16]  Professor Sergiu Rudeanu Lattice Functions and Equations , 2001, Discrete Mathematics and Theoretical Computer Science.

[17]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[18]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[19]  Sergiu Rudeanu Boolean functions and equations , 1974 .

[20]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[21]  Leopold Löwenheim,et al.  Über die Auflösung von Gleichungen im logischen Gebietekalkul , 1910 .

[22]  Franz Baader On the Complexity of Boolean Unification , 1998, Inf. Process. Lett..

[23]  M. Carlsson Boolean constraints in SICStus Prolog , 1991 .

[24]  Wolfram Büttner,et al.  Embedding Boolean Expressions into Logic Programming , 1987, J. Symb. Comput..

[25]  Tobias Nipkow,et al.  Boolean Unification - The Story So Far , 1989, J. Symb. Comput..

[26]  Christoph Wernhard,et al.  The Boolean Solution Problem from the Perspective of Predicate Logic - Extended Version , 2017, ArXiv.

[27]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[28]  Viorica Sofronie-Stokkermans Formula-handling computer solution of Boolean equations, I. Ring equations , 1989, Bull. EATCS.

[29]  Heinrich Behmann Das Auflösungsproblem in der Klassenlogik , 1951, Arch. Math. Log..

[30]  Viktor Schuppan,et al.  Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..

[31]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.