Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression

Accumulation of neurobiological knowledge points to neurodevelopmental origins for certain psychotic and mood disorders. Recent landmark postmortem reports implicate Reelin, a secretory glycoprotein responsible for normal lamination of brain, in the pathology of schizophrenia and bipolar disorders. We employed quantitative immunocytochemistry to measure levels of Reelin protein in various compartments of hippocampal formation in subjects diagnosed with schizophrenia, bipolar disorder and major depression compared to normal controls. Significant reductions were observed in Reelin-positive adjusted cell densities in the dentate molecular layer (ANOVA, P < 0.001), CA4 area (ANOVA, P < 0.001), total hippocampal area (ANOVA, P < 0.038) and in Reelin-positive cell counts in CA4 (ANOVA, P < 0.042) of schizophrenics vs controls. Adjusted Reelin-positive cell densities were also reduced in CA4 areas of subjects with bipolar disorder (ANOVA, P < 0.001) and nonsignificantly in those with major depression. CA4 areas were also significantly reduced in schizophrenic (ANOVA, P < 0.009) patients. No significant effects of confounding variables were found. The exception was that family history of psychiatric illness correlated strongly with Reelin reductions in several areas of hippocampus (CA4, adjusted cell density, F = 13.77, P = 0.001). We present new immunocytochemical evidence showing reductions in Reelin expression in hippocampus of subjects with schizophrenia, bipolar disorder and major depression and confirm recent reports documenting a similar deficit involving Reelin expression in brains of subjects with schizophrenia and bipolar disorder.

[1]  J J Kim,et al.  Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. , 1993, Archives of general psychiatry.

[2]  A. Guidotti,et al.  Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Marc G Caron,et al.  Mice with Reduced NMDA Receptor Expression Display Behaviors Related to Schizophrenia , 1999, Cell.

[4]  P. Goldman-Rakic,et al.  The reduced neuropil hypothesis: a circuit based model of schizophrenia , 1999, Biological Psychiatry.

[5]  R. Chiquet‐Ehrismann,et al.  Tenascin function and regulation of expression. , 1993, Symposia of the Society for Experimental Biology.

[6]  A. Guidotti,et al.  Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Yogesh K. Dwivedi,et al.  The phenotypic characteristics of heterozygous reeler mouse. , 1999, Neuroreport.

[8]  D. Weinberger,et al.  Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. , 1990, The New England journal of medicine.

[9]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[10]  M. Seike,et al.  The reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons , 1995, Neuron.

[11]  P. Rakic,et al.  Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. , 1999, Neuron.

[12]  K. Mikoshiba,et al.  Reelin Is a Secreted Glycoprotein Recognized by the CR-50 Monoclonal Antibody , 1997, The Journal of Neuroscience.

[13]  Erminio Costa,et al.  Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex , 2000 .

[14]  R. Yolken,et al.  The Stanley Foundation brain collection and Neuropathology Consortium , 2000, Schizophrenia Research.

[15]  K. Mikoshiba,et al.  Disruption of hippocampal development in vivo by CR-50 mAb against reelin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Schulz,et al.  Meta-analysis of brain size in bipolar disorder , 1999, Schizophrenia Research.

[17]  C. Pantelis,et al.  Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. , 1999, Archives of general psychiatry.

[18]  D. Krizman,et al.  A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. , 1995, Genomics.

[19]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[20]  T. Jessell,et al.  F-spondin: A gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension , 1992, Cell.

[21]  Yogesh K. Dwivedi,et al.  A decrease of reelin expression as a putative vulnerability factor in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Curran,et al.  A protein related to extracellular matrix proteins deleted in the mouse mutant reeler , 1995, Nature.

[23]  M. Webster,et al.  Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium , 2001, Brain Research Bulletin.

[24]  K. Mikoshiba,et al.  A truncated Reelin protein is produced but not secreted in the 'Orleans' reeler mutation (Reln[rl-Orl]). , 1997, Brain research. Molecular brain research.

[25]  K. Mikoshiba,et al.  Reelin Regulates the Development and Synaptogenesis of the Layer-Specific Entorhino-Hippocampal Connections , 1999, The Journal of Neuroscience.

[26]  D. Weinberger,et al.  Cell biology of the hippocampal formation in schizophrenia , 1999, Biological Psychiatry.

[27]  C A Sandman,et al.  Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. , 1993, Archives of general psychiatry.

[28]  E. Emamian,et al.  Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice , 1999, Molecular Psychiatry.

[29]  John Shelton,et al.  Reeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice Lacking the VLDL Receptor and ApoE Receptor 2 , 1999, Cell.

[30]  A. Guidotti,et al.  Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.