Parameter Sensitivity in LSMs: An Analysis Using Stochastic Soil Moisture Models and ELDAS Soil Parameters

Integration of simulated and observed states through data assimilation as well as model evaluation requires a realistic representation of soil moisture in land surface models (LSMs). However, soil moisture in LSMs is sensitive to a range of uncertain input parameters, and intermodel differences in parameter values are often large. Here, the effect of soil parameters on soil moisture and evapotranspiration are investigated by using parameters fromthree differentLSMs participatingin the EuropeanLandDataAssimilation System (ELDAS) project. To prevent compensating effects from other than soil parameters, the effects are evaluated within a common framework of parsimonious stochastic soil moisture models. First, soil parameters are shown to affect soilmoisture more stronglythanthe averageevapotranspiration. Inarid climates, the effectofsoilparameters is on the variance rather than the mean, and the intermodel flux differences are smallest. Soil parameters from the ELDAS LSMs differ strongly, most notably in the available moisture content between the wilting point and the critical moisture content, which differ by a factor of 3. The ELDAS parameters can lead to differences in mean volumetric soil moisture as high as 0.10 and an average evapotranspiration of 10%‐20% for the investigated parameter range. The parsimonious framework presented here can be used to investigate first-order parameter sensitivities under a range of climate conditions without using full LSM simulations. The results are consistent with many other studies using different LSMs under a more limited range of possible forcing conditions.

[1]  A. K. Betts,et al.  O ine validation of the ERA 40 surface scheme , 2000 .

[2]  Peter Troch,et al.  Observed timescales of evapotranspiration response to soil moisture , 2006 .

[3]  Xu Liang,et al.  Intercomparison of land-surface parameterization schemes: sensitivity of surface energy and water fluxes to model parameters , 2003 .

[4]  A. J. Dolman,et al.  The Pilot Phase of the Global Soil Wetness Project , 1999 .

[5]  Randal D. Koster,et al.  Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data , 2004 .

[6]  J. Mahfouf,et al.  Inclusion of Gravitational Drainage in a Land Surface Scheme Based on the Force-Restore Method. , 1996 .

[7]  Peter A. Troch,et al.  On bimodality in warm season soil moisture observations , 2005 .

[8]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[9]  H. Douville Assessing the Influence of Soil Moisture on Seasonal Climate Variability with AGCMs , 2003 .

[10]  Dara Entekhabi,et al.  Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  Jean-François Mahfouf,et al.  Evaluation of the Optimum Interpolation and Nudging Techniques for Soil Moisture Analysis Using FIFE Data , 2000 .

[12]  Dennis D. Baldocchi,et al.  An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites , 2007 .

[13]  R. Koster,et al.  The Influence of Land Surface Moisture Retention on Precipitation Statistics. , 1996 .

[14]  Sonia I. Seneviratne,et al.  Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River Basin , 2004 .

[15]  Wim G.M. Bastiaanssen,et al.  A New Methodology for Assimilation of Initial Soil Moisture Fields in Weather Prediction Models Using Meteosat and NOAA Data. , 1997 .

[16]  I. Rodríguez‐Iturbe,et al.  Ecohydrology of water-controlled ecosystems , 2004 .

[17]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[18]  R. Dickinson,et al.  A numerical approach to calculating soil wetness and evapotranspiration over large grid areas , 2007 .

[19]  Michael G. Bosilovich,et al.  Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA‐40) and NASA Data Assimilation Office fvGCM for 1990–1999 , 2003 .

[20]  Pedro Viterbo,et al.  An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .

[21]  Robert B. Jackson,et al.  THE GLOBAL BIOGEOGRAPHY OF ROOTS , 2002 .

[22]  R. H. Shaw,et al.  Availability of Soil Water to Plants as Affected by Soil Moisture Content and Meteorological Conditions1 , 1962 .

[23]  A. Dolman,et al.  Land surface scheme conceptualisation and parameter values for three sites with contrasting soils and climate , 2000 .

[24]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[25]  Gerd Schädler,et al.  Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models , 2005 .

[26]  Randal D. Koster,et al.  Soil Moisture Memory in Climate Models , 2001 .

[27]  Wade T. Crow,et al.  Impact of Soil Moisture Aggregation on Surface Energy Flux Prediction During SGP'97 , 2002 .

[28]  Thomas J. Jackson,et al.  Assimilation of surface soil moisture to estimate profile soil water content , 2003 .

[29]  G. Kiely,et al.  On the structure of soil moisture time series in the context of land surface models , 2001 .

[30]  D. Lohmann,et al.  Timescales of land surface evapotranspiration response in the PILPS phase 2(c) , 2003 .

[31]  Binayak P. Mohanty,et al.  Near‐Surface Soil Moisture Assimilation for Quantifying Effective Soil Hydraulic Properties under Different Hydroclimatic Conditions , 2008 .

[32]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[33]  Luca Ridolfi,et al.  Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics , 2001 .

[34]  Andrew J. Pitman,et al.  Assessing the Sensitivity of a Land-Surface Scheme to the Parameter Values Using a Single Column Model , 1994 .

[35]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[36]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[37]  Eric E. Small,et al.  The effect of soil hydraulic properties vs. soil texture in land surface models , 2005 .

[38]  V. Isham,et al.  Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[40]  Syukuro Manabe,et al.  THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH ’ S SURFACE , 1969 .

[41]  A. Teuling,et al.  A state‐dependent parameterization of saturated‐unsaturated zone interaction , 2008 .

[42]  F. Bouttier,et al.  Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part I: Sensitivity and Calibration Studies , 1993 .

[43]  M. Bierkens,et al.  Assimilation of remotely sensed latent heat flux in a distributed hydrological model , 2003 .

[44]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[45]  Janneke Ettema,et al.  Analysis of Soil Moisture Changes in Europe during a Single Growing Season in a New ECMWF Soil Moisture Assimilation System , 2008 .

[46]  Randal D. Koster,et al.  Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model , 2005 .

[47]  T. Meyers,et al.  Sensitivity of Land Surface Simulations to Model Physics, Land Characteristics, and Forcings, at Four CEOP Sites , 2007 .

[48]  P. Calanca Interannual variability of summer mean soil moisture conditions in Switzerland during the 20th century: A look using a stochastic soil moisture model , 2004 .

[49]  Y. Xue,et al.  The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid sahel: A case study using SEBEX and HAPEX-Sahel data , 2006 .

[50]  F. Kucharski,et al.  Variational analysis of effective soil moisture from screen‐level atmospheric parameters: Application to a short‐range weather forecast model , 1999 .

[51]  J. Stricker,et al.  Functional behaviour of pedotransfer functions in soil water flow simulation , 2003 .

[52]  Randal D. Koster,et al.  The Interplay between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models , 1997 .

[53]  J. Mahfouf,et al.  Soil moisture analysis combining screen‐level parameters and microwave brightness temperature: A test with field data , 2003 .

[54]  Olivier Merlin,et al.  Dry‐end surface soil moisture variability during NAFE'06 , 2007 .

[55]  A. Lin,et al.  Evaluation of European Land Data Assimilation System ( ELDAS ) products using in situ observations , 2008 .

[56]  A. Western,et al.  The Effect of Soil and Vegetation Parameters in the ECMWF Land Surface Scheme , 2004 .

[57]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .