Rogue waves formation by solitons synchronization and resonance: Gerdjikov-Ivanov equation

[1]  S. Salahshour,et al.  Non-singular multi-complexiton wave to a generalized KdV equation , 2023, Nonlinear Dynamics.

[2]  Nehad Ali Shah,et al.  Multiple soliton, M-lump and interaction solutions to the (3+1)-dimensional soliton equation , 2023, Results in Physics.

[3]  K. Fatema,et al.  The mathematical and wave profile analysis of the Maccari system in nonlinear physical phenomena , 2022, Optical and Quantum Electronics.

[4]  T. Sulaiman,et al.  Multi-solutions with specific geometrical wave structures to a nonlinear evolution equation in the presence of the linear superposition principle , 2022, Communications in Theoretical Physics.

[5]  D. Baleanu,et al.  Extended classical optical solitons to a nonlinear Schrodinger equation expressing the resonant nonlinear light propagation through isolated flaws in optical waveguides , 2022, Optical and Quantum Electronics.

[6]  Bo Yang,et al.  Partial-Rogue Waves that Come from Nowhere But Leave with a Trace in the Sasa-Satsuma Equation , 2022, SSRN Electronic Journal.

[7]  D. Baleanu,et al.  Families of optical soliton solutions for the nonlinear Hirota-Schrodinger equation , 2022, Optical and Quantum Electronics.

[8]  D. Baleanu,et al.  Breather and lump-periodic wave solutions to a system of nonlinear wave model arising in fluid mechanics , 2022, Nonlinear Dynamics.

[9]  D. Baleanu,et al.  Optical solitons with nonlinear dispersion in parabolic law medium and three-component coupled nonlinear Schrödinger equation , 2022, Optical and Quantum Electronics.

[10]  A. Yusuf,et al.  Convex-rogue, half-kink, cusp-soliton and other bidirectional wave-solutions to the generalized Pochhammer-Chree equation , 2022, Physica Scripta.

[11]  J. Rao,et al.  Resonant collisions between lumps and periodic solitons in the Kadomtsev–Petviashvili I equation , 2022, Journal of Mathematical Physics.

[12]  Min Li,et al.  Higher-order algebraic soliton solutions of the Gerdjikov-Ivanov equation: Asymptotic analysis and emergence of rogue waves , 2021, Physica D: Nonlinear Phenomena.

[13]  Jingsong He,et al.  Higher-order rogue wave solutions to the Kadomtsev–Petviashvili 1 equation , 2021 .

[14]  A. Ankiewicz Rogue and semi-rogue waves defined by volume , 2021, Nonlinear Dynamics.

[15]  D. Pelinovsky,et al.  Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. , 2021, Physical review. E.

[16]  A. Wazwaz,et al.  A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions , 2021 .

[17]  E. Fan,et al.  Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the zero/nonzero background , 2020, Zeitschrift für angewandte Mathematik und Physik.

[18]  S. Lou,et al.  Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance , 2019, Journal of Physics Communications.

[19]  K. U. Tariq,et al.  Investigation of soliton solutions with different wave structures to the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation , 2020, Communications in Theoretical Physics.

[20]  U. Morgner,et al.  Soliton Molecules with Two Frequencies. , 2019, Physical review letters.

[21]  Jingsong He,et al.  Rogue waves generation through multiphase solutions degeneration for the derivative nonlinear Schrödinger equation , 2019, Nonlinear Dynamics.

[22]  V. Zakharov,et al.  Breather Wave Molecules. , 2019, Physical review letters.

[23]  Lihong Wang,et al.  Degeneracy in bright-dark solitons of the Derivative Nonlinear Schrödinger equation , 2019, Appl. Math. Lett..

[24]  Xianguo Geng,et al.  Trace formula and new form of N-soliton to the Gerdjikov–Ivanov equation , 2018 .

[25]  Yudong Cui,et al.  Real-Time Observation of the Buildup of Soliton Molecules. , 2018, Physical review letters.

[26]  B. Jalali,et al.  Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules , 2017, Science.

[27]  E. Pelinovsky,et al.  Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. , 2016, Physical review letters.

[28]  G. El,et al.  Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Jingsong He,et al.  Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Umberto Bortolozzo,et al.  Rogue waves and their generating mechanisms in different physical contexts , 2013 .

[31]  Jingsong He,et al.  The higher order rogue wave solutions of the Gerdjikov–Ivanov equation , 2013, 1304.2583.

[32]  R. Grimshaw,et al.  Two-soliton interaction as an elementary act of soliton turbulence in integrable systems , 2013 .

[33]  Yong Chen,et al.  Long-time Asymptotic for the Derivative Nonlinear Schrödinger Equation with Step-like Initial Value , 2012, 1209.4245.

[34]  Q. P. Liu,et al.  High‐Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrödinger Equations , 2012, 1205.4369.

[35]  N. Hoffmann,et al.  Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves , 2012 .

[36]  Jingsong He,et al.  Two kinds of new integrable decompositions of the Gerdjikov-Ivanov equation , 2012 .

[37]  Jingsong He,et al.  Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Jingsong He,et al.  The rogue wave and breather solution of the Gerdjikov-Ivanov equation , 2011, 1109.3283.

[39]  Jingsong He,et al.  The Darboux transformation of the derivative nonlinear Schrödinger equation , 2011, 1109.0674.

[40]  N. Hoffmann,et al.  Rogue wave observation in a water wave tank. , 2011, Physical review letters.

[41]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[42]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  L. Ostrovsky,et al.  Modulation instability: The beginning , 2009 .

[44]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[45]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[46]  Engui Fan,et al.  Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation , 2000 .

[47]  Engui Fan,et al.  Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation , 2000 .

[48]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[49]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[50]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[51]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[52]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[53]  E. Kuznetsov,et al.  Solitons in a parametrically unstable plasma , 1977 .

[54]  Shou‐Fu Tian,et al.  Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition , 2017 .