Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation

This paper proposes a sliding-mode enhanced adaptive control methodology for piezoelectric actuation systems to track specified motion trajectories. This control methodology is proposed to overcome the problems of unknown or uncertain system parameters, nonlinearities including the hysteresis effect, and external disturbances in the piezoelectric actuation systems, without any form of feedforward compensation. In this paper, a special class of positive definite functions is employed to formulate the control methodology such that the closed-loop system stability can be guaranteed. The control formulation, stability analysis, and analytical closed-loop solution are presented. Furthermore, a precise tracking ability in following a specified motion trajectory is demonstrated in the experimental study. With the capability of motion tracking under the aforementioned conditions, the sliding-mode enhanced adaptive control methodology is very attractive in realising high-performance control applications in the field of micro/nano manipulation.

[1]  Hwee Choo Liaw,et al.  Special class of positive definite functions for formulating adaptive micro/nano manipulator control , 2006, 9th IEEE International Workshop on Advanced Motion Control, 2006..

[2]  Tien-Fu Lu,et al.  A three-DOF compliant micromotion stage with flexure hinges , 2004, Ind. Robot.

[3]  Georg Schitter,et al.  Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy , 2004, IEEE Transactions on Control Systems Technology.

[4]  Lining Sun,et al.  Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model , 2005 .

[5]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[6]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[7]  Xuemei Sun,et al.  Analysis and control of monolithic piezoelectric nano-actuator , 2001, IEEE Trans. Control. Syst. Technol..

[8]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[9]  K.K. Tan,et al.  Computer controlled piezo micromanipulation system for biomedical applications , 2001 .

[10]  Il Hong Suh,et al.  Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges , 2002, IEEE Trans. Robotics Autom..

[11]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[12]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[13]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[14]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[15]  C.N. Riviere,et al.  Active tremor compensation in microsurgery , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[16]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[17]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[18]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[19]  N.V. Thakor,et al.  Adaptive cancelling of physiological tremor for improved precision in microsurgery , 1998, IEEE Transactions on Biomedical Engineering.

[20]  Yonghong Tan,et al.  Modeling hysteresis using hybrid method of continuous transformation and neural networks , 2005 .

[21]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[22]  Y. Somov Modelling physical hysteresis and control of a fine piezo-drive , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[23]  S. Li-ning,et al.  Hysteresis and creep compensation for piezoelectric actuator in open-loop operation , 2005 .

[24]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[25]  Bijan Shirinzadeh,et al.  Optimum synthesis of planar parallel manipulators based on kinematic isotropy and force balancing , 2004, Robotica.

[26]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[27]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[28]  Yonghong Tan,et al.  An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .

[29]  K. Spanner,et al.  Advances in piezo-nanopositioning technology , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[30]  Bijan Shirinzadeh,et al.  Kinematics and stiffness analyses of a flexure-jointed planar micromanipulation system for a decoupled compliant motion , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[31]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[32]  B. Shirinzadeh,et al.  Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint , 2004 .

[33]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[34]  Y. Egashira,et al.  Development of nano-surgery system for cell organelles , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[35]  Bijan Shirinzadeh,et al.  Adaptive Control Strategy for Micro/Nano Manipulation Systems , 2006, IAS.