The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient

We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from −30 to 275 days relative to the peak UV/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite data, we determine that the ANT began to brighten on 2020 June 22.8 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 30 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity of L = (3.15 ± 0.04) × 1043 erg s−1. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to L x ∼ 1.5 × 1042 erg s−1 and then slowly declined over time. The X-ray emission is well fit by a power law with a photon index of Γ ∼ 2.3–2.6. Both the optical and near-infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events and active galactic nuclei, it cannot be definitively classified with current data.

[1]  S. Jha,et al.  The Rapid X-Ray and UV Evolution of ASASSN-14ko , 2021, The Astrophysical Journal.

[2]  S. Balbus,et al.  Hard X-ray emission from a Compton scattering corona in large black hole mass tidal disruption events , 2021, 2104.06195.

[3]  T. Holoien,et al.  A Swift Fix for Nuclear Outbursts , 2021 .

[4]  E. Berger,et al.  Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg , 2021, The Astrophysical Journal.

[5]  L. Ho,et al.  The 450 Day X-Ray Monitoring of the Changing-look AGN 1ES 1927+654 , 2021, 2102.05666.

[6]  C. Kochanek,et al.  Early-time Light Curves of Type Ia Supernovae Observed with TESS , 2021, The Astrophysical Journal.

[7]  A. Drake,et al.  AT 2019avd: a novel addition to the diverse population of nuclear transients , 2021, Astronomy & Astrophysics.

[8]  Z. Arzoumanian,et al.  Rapid Accretion State Transitions following the Tidal Disruption Event AT2018fyk , 2021, The Astrophysical Journal.

[9]  J. Prieto,et al.  An AMUSING look at the host of the periodic nuclear transient ASASSN-14ko reveals a second AGN , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  S. Gezari,et al.  Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT 2019qiz , 2020, The Astrophysical Journal.

[11]  A. Mahabal,et al.  A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies , 2020, The Astrophysical Journal.

[12]  J. Prieto,et al.  ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003 , 2020, The Astrophysical Journal.

[13]  D. Young,et al.  Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  M. L. Pumo,et al.  Low-luminosity Type II supernovae – III. SN 2018hwm, a faint event with an unusually long plateau , 2020, 2011.11297.

[15]  C. Kochanek,et al.  High-cadence, early-time observations of core-collapse supernovae from the TESS prime mission , 2020, 2010.06596.

[16]  L. Ho,et al.  The Destruction and Recreation of the X-Ray Corona in a Changing-look Active Galactic Nucleus , 2020, The Astrophysical Journal.

[17]  M. Graham,et al.  Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  T. Wevers Fainter harder brighter softer: a correlation between αox, X-ray spectral state, and Eddington ratio in tidal disruption events , 2020, 2006.06684.

[19]  S. Smartt,et al.  An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz , 2020, Monthly Notices of the Royal Astronomical Society.

[20]  A. Horesh,et al.  Radio Properties of Tidal Disruption Events , 2020, Space Science Reviews.

[21]  H. Campbell,et al.  Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015 , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  Shannon G. Patel,et al.  The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times , 2020, The Astrophysical Journal.

[23]  A. Rest,et al.  Double-peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event , 2020, The Astrophysical Journal.

[24]  C. Kochanek,et al.  Examining a Peak-luminosity/Decline-rate Relationship for Tidal Disruption Events , 2020, The Astrophysical Journal.

[25]  T. Piran,et al.  Tidal Disruptions of Main-sequence Stars. I. Observable Quantities and Their Dependence on Stellar and Black Hole Mass , 2020, The Astrophysical Journal.

[26]  A. Mahabal,et al.  Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies , 2020, The Astrophysical Journal.

[27]  L. Galbany,et al.  Galaxies hosting an active galactic nucleus: a view from the CALIFA survey , 2019, 2001.00099.

[28]  M. Graham,et al.  Four (Super)luminous Supernovae from the First Months of the ZTF Survey , 2019, The Astrophysical Journal.

[29]  J. Prieto,et al.  To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities , 2019, Monthly Notices of the Royal Astronomical Society.

[30]  S. Gezari,et al.  Erratum: Black hole masses of tidal disruption event host galaxies II , 2017, Monthly Notices of the Royal Astronomical Society.

[31]  J. Prieto,et al.  Nebular spectra of 111 Type Ia supernovae disfavour single-degenerate progenitors , 2020 .

[32]  Takashi Okajima,et al.  Constraining the Neutron Star Mass–Radius Relation and Dense Matter Equation of State with NICER. I. The Millisecond Pulsar X-Ray Data Set , 2019, The Astrophysical Journal.

[33]  L. Kewley,et al.  Separating line emission from star formation, shocks, and AGN ionization in NGC 1068 , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  Adam A. Miller,et al.  A New Class of Changing-look LINERs , 2019, The Astrophysical Journal.

[35]  J. Prieto,et al.  Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS , 2019, The Astrophysical Journal.

[36]  K. Maguire,et al.  Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  J. Prieto,et al.  1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months , 2019, The Astrophysical Journal.

[38]  J. Prieto,et al.  ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  S. Rosswog,et al.  Tidal disruptions by rotating black holes: effects of spin and impact parameter , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[41]  K. Maguire,et al.  The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events , 2019, The Astrophysical Journal.

[42]  M. Phillips,et al.  A new class of flares from accreting supermassive black holes , 2019, Nature Astronomy.

[43]  K. Maguire,et al.  Discovery and follow-up of the unusual nuclear transient OGLE17aaj , 2019, Astronomy & Astrophysics.

[44]  C. Reynolds Observing black holes spin , 2019, Nature Astronomy.

[45]  Benjamin Rose,et al.  The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library , 2018, The Astrophysical Journal Supplement Series.

[46]  J. Prieto,et al.  The ASAS-SN bright supernova catalogue – IV. 2017 , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  J. Prieto,et al.  PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk , 2018, The Astrophysical Journal.

[48]  Enrico Ramirez-Ruiz,et al.  Weighing Black Holes Using Tidal Disruption Events , 2018, The Astrophysical Journal.

[49]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[50]  J. Prieto,et al.  The unusual late-time evolution of the tidal disruption event ASASSN-15oi , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[52]  Xiaohui Fan,et al.  Discovery of 21 New Changing-look AGNs in the Northern Sky , 2017, The Astrophysical Journal.

[53]  E. Kara,et al.  Ultrafast outflow in tidal disruption event ASASSN-14li , 2017, 1711.06090.

[54]  S. Velzen On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons , 2017, 1707.03458.

[55]  J. Prieto,et al.  The Ultraviolet Spectroscopic Evolution of the Low-Luminosity Tidal Disruption Event iPTF16fnl , 2017, 1704.02321.

[56]  J. Guillochon,et al.  A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei , 2017, 1703.06141.

[57]  S. Gezari,et al.  X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi , 2017, 1712.03968.

[58]  Gautham Narayan,et al.  MOSFiT: Modular Open Source Fitter for Transients , 2017, 1710.02145.

[59]  L. Ho,et al.  BAT AGN Spectroscopic Survey. V. X-Ray Properties of the Swift/BAT 70-month AGN Catalog , 2017, 1709.03989.

[60]  J. Prieto,et al.  Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy , 2017, 1708.00864.

[61]  M. Phillips,et al.  The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves , 2017, 1707.07614.

[62]  D. Kasen,et al.  What Sets the Line Profiles in Tidal Disruption Events? , 2017, 1707.02993.

[63]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[64]  S. Djorgovski,et al.  Understanding extreme quasar optical variability with CRTS – I. Major AGN flares , 2017, 1706.03079.

[65]  N. Barrière,et al.  Sagittarius A * High-energy X-Ray Flare Properties during NuStar Monitoring of the Galactic Center from 2012 to 2015 , 2017, 1705.08002.

[66]  E. Berger,et al.  PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy , 2017, 1703.07816.

[67]  S. Gezari,et al.  iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy , 2017, 1703.00965.

[68]  W. Brandt,et al.  X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration , 2017, 1703.00657.

[69]  K. Schawinski,et al.  BAT AGN Spectroscopic Survey -IV. : near-infrared coronal lines, hidden broad lines and correlation with hard X-ray emission , 2017, 1701.02755.

[70]  J. Guillochon,et al.  New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths , 2016, 1611.02291.

[71]  R. Davé,et al.  Cold gas stripping in satellite galaxies: from pairs to clusters , 2016, 1611.00896.

[72]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[73]  S. Fleming,et al.  gPhoton: THE GALEX PHOTON DATA ARCHIVE , 2016, 1609.09492.

[74]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[75]  C. Kochanek Tidal disruption event demographics , 2016 .

[76]  Bing Zhang,et al.  Catching jetted tidal disruption events early in millimetre , 2016, 1606.06830.

[77]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[78]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[79]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[80]  W. Zeilinger,et al.  The matter distribution in the local universe as derived from galaxy groups in SDSS DR12 and 2MRS , 2015, 1511.05856.

[81]  N. Ross,et al.  A systematic search for changing-look quasars in SDSS , 2015, 1509.08393.

[82]  L. Kewley,et al.  Starburst–AGN mixing – II. Optically selected active galaxies , 2014, 1408.5888.

[83]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[84]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[85]  Neelam Dhanda Batra,et al.  The Metallicities of the Broad Emission Line Regions in the Nitrogen-Loudest Quasars , 2014, 1401.5050.

[86]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF γ-RAY BLAZAR CANDIDATES. I. PRELIMINARY RESULTS , 2013, 1404.5211.

[87]  L. Simard,et al.  A CATALOG OF BULGE, DISK, AND TOTAL STELLAR MASS ESTIMATES FOR THE SLOAN DIGITAL SKY SURVEY , 2013, 1310.8304.

[88]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[89]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[90]  C. Reynolds,et al.  Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy , 2013, 1302.3260.

[91]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[92]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[93]  E. Solano,et al.  SVO Filter Profile Service Version 1.0 , 2012 .

[94]  Takashi Okajima,et al.  The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy , 2012, Other Conferences.

[95]  A. Gal-yam Luminous Supernovae , 2012, Science.

[96]  K. S. Thorne,et al.  SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS , 2012, 1205.1124.

[97]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[98]  Luth,et al.  A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN? , 2010, 1012.4426.

[99]  Israel,et al.  Multiband light curves of tidal disruption events , 2010, 1008.4589.

[100]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[101]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[102]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[103]  T. P. O'Brien,et al.  The multi-object double spectrographs for the Large Binocular Telescope , 2006, Astronomical Telescopes + Instrumentation.

[104]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[105]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[106]  Timothy M. Heckman,et al.  Feast and Famine: regulation of black hole growth in low-redshift galaxies , 2008, 0812.1224.

[107]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[108]  B. Peterson,et al.  The Near-Infrared Broad Emission Line Region of Active Galactic Nuclei. I. The Observations , 2007, 0708.1083.

[109]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[110]  David W. Hogg,et al.  CLEANING THE USNO-B CATALOG THROUGH AUTOMATIC DETECTION OF OPTICAL ARTIFACTS , 2007, 0709.2358.

[111]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[112]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[113]  John M. Hill,et al.  The Large Binocular Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[114]  S. Borgani,et al.  X-ray spectral properties of active galactic nuclei in the Chandra deep field south , 2006, astro-ph/0602127.

[115]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[116]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[117]  R. Maiolino,et al.  A search for changing-look AGN in the Grossan catalog , 2005, astro-ph/0507323.

[118]  H. Ford,et al.  Supermassive black hole mass measurements for NGC 1300 and 2748 based on Hubble Space Telescope emission‐line gas kinematics , 2005, astro-ph/0502573.

[119]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[120]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[121]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[122]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[123]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[124]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[125]  Richard M. Ambrosi,et al.  SWIFT XRT point spread function measured at the Panter end-to-end tests , 2004, SPIE Optics + Photonics.

[126]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[127]  Christophe Bonnaud,et al.  SNIFS: a wideband integral field spectrograph with microlens arrays , 2003, SPIE Optical Systems Design.

[128]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[129]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[130]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[131]  M.Gilfanov Low mass X-ray binaries as a stellar mass indicator for the host galaxy , 2003, astro-ph/0309454.

[132]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[133]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[134]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[135]  R. Chornock,et al.  “Hidden” Seyfert 2 Galaxies and the X-Ray Background , 2002, astro-ph/0210047.

[136]  A. Filippenko,et al.  Spectropolarimetry of the Type II Supernovae 1997ds, 1998A, and 1999gi , 2001, astro-ph/0105295.

[137]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[138]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[139]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[140]  Miroslava Dessauges-Zavadsky,et al.  Spectral classification of emission-line galaxies , 2000 .

[141]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[142]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[143]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[144]  C. Reynolds An X-ray spectral study of 24 type-1 AGN , 1996, astro-ph/9610127.

[145]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[146]  J. Poutanen,et al.  The Two-Phase Pair Corona Model for Active Galactic Nuclei and X-ray Binaries: How to Obtain Exact Solutions , 1996, astro-ph/9605073.

[147]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[148]  H. Ford,et al.  Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[149]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[150]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[151]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[152]  E. Phinney Cosmic merger mania , 1989, Nature.

[153]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[154]  J. Mathis,et al.  The determination of ultraviolet extinction from the optical and near-infrared , 1988 .

[155]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[156]  Richard F. Mushotzky,et al.  X-ray spectra and time variability of active galactic nuclei , 1993 .

[157]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[158]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[159]  E. Salpeter The Luminosity function and stellar evolution , 1955 .