El Niño prediction and predictability

El Nino-Southern Oscillation (ENSO) is by far the most energetic, and at present also the most predictable, short-term fluctuation in the Earth's climate system, though the limits of its predictability are still a subject of considerable debate. As a result of over two-decades of intensive observational, theoretical and modeling efforts, ENSO's basic dynamics is now well understood and its prediction has become a routine practice at application centers all over the world. The predictability of ENSO largely stems from the ocean-atmosphere interaction in the tropical Pacific and the low-dimensional nature of this coupled system. Present ENSO forecast models, in spite of their vast differences in complexity, exhibit comparable predictive skills, which seem to have hit a plateau at moderate level. However, mounting evidence suggests that there is still room for improvement. In particular, better model initialization and data assimilation, better simulation of surface heat and freshwater fluxes, and better representation of the relevant processes outside of the tropical Pacific, could all lead to improved ENSO forecasts.

[1]  Alexey Kaplan,et al.  Use of data assimilation via linear low‐order models for the initialization of El Niño‐Southern Oscillation predictions , 2001 .

[2]  Simon J. Mason,et al.  Evaluation of the IRI's “Net Assessment” Seasonal Climate Forecasts: 1997–2001 , 2003 .

[3]  T. Barnett,et al.  Sea Surface Temperature, Surface Wind Divergence, and Convection over Tropical Oceans , 1987, Science.

[4]  Antonio J. Busalacchi,et al.  Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998 , 2000 .

[5]  Swadhin K. Behera,et al.  Comments on “Dipoles, Temperature Gradients, and Tropical Climate Anomalies” , 2003 .

[6]  David L. T. Anderson,et al.  Decadal and Seasonal Dependence of ENSO Prediction Skill , 1995 .

[7]  M. Cane,et al.  A Theory for El Ni�o and the Southern Oscillation , 1985, Science.

[8]  Kenneth R. Sperber,et al.  Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project , 1996 .

[9]  Andrew T. Wittenberg,et al.  How Predictable is El Niño , 2003 .

[10]  J. David Neelin,et al.  A Hybrid Coupled General Circulation Model for El Niño Studies , 1990 .

[11]  John Fletcher,et al.  Conditional probabilities , 2009, BMJ : British Medical Journal.

[12]  James T. Potemra,et al.  Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode , 2003 .

[13]  Mark A. Cane,et al.  Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years , 2005 .

[14]  A. Barnston,et al.  Predictive Skill of Statistical and Dynamical Climate Models in SST Forecasts during the 1997-98 El Niño Episode and the 1998 La Niña Onset. , 1999 .

[15]  Christophe Cassou,et al.  Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño , 2000 .

[16]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model , 1997 .

[17]  H. Storch,et al.  Predicting the State of the Southern Oscillation Using Principal Oscillation Pattern Analysis , 1990 .

[18]  S. Philander,et al.  Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics , 1997, Science.

[19]  B. Goswami,et al.  A dipole mode in the tropical Indian Ocean , 1999, Nature.

[20]  Antonio J. Busalacchi,et al.  The Tropical Ocean‐Global Atmosphere observing system: A decade of progress , 1998 .

[21]  Andrew T. Wittenberg,et al.  Reassessing the role of stochastic forcing in the 1997–1998 El Niño , 2006 .

[22]  Janette Lindesay,et al.  ENSO and climatic signals across the Indian Ocean Basin in the global context: part I, interannual composite patterns , 2000 .

[23]  Mark A. Cane,et al.  Experimental forecasts of El Niño , 1986, Nature.

[24]  Eli Tziperman,et al.  Westerly Wind Bursts: ENSO's tail rather than the dog? , 2004 .

[25]  Alexey Kaplan,et al.  Predictability of El Niño over the past 148 years , 2004, Nature.

[26]  Mark A. Cane,et al.  The evolution of El Nino, past and future , 2005 .

[27]  William W. Hsieh,et al.  Forecasting the equatorial Pacific sea surface temperatures by neural network models , 1997 .

[28]  D. Battisti,et al.  A Linear Stochastic Dynamical Model of ENSO. Part II: Analysis. , 2001 .

[29]  R. Newell,et al.  Climate and the Ocean , 1979 .

[30]  W. Timothy Liu,et al.  Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes , 1994 .

[31]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model , 1997 .

[32]  Rex N. Taylor,et al.  Glacioisostacy controls chemical and isotopic characteristics of tholeiites from the Reykjanes Peninsula, SW Iceland , 1998 .

[33]  S. Nigam,et al.  Structure of Oceanic and Atmospheric Low-Frequency Variability over the Tropical Pacific and Indian Oceans. Part I: COADS Observations , 1993 .

[34]  Wilfredo Palma,et al.  Estimation of Tropical Sea Level Anomaly by an Improved Kalman Filter , 1996 .

[35]  Sharon E. Nicholson,et al.  Correction: An analysis of the ENSO signal in the tropical Atlantic and Western Indian oceans , 1997 .

[36]  Ming Ji,et al.  ENSO Prediction with Markov Models: The Impact of Sea Level , 2000 .

[37]  E. Cook,et al.  Variability in the El Niño-Southern Oscillation Through a Glacial-Interglacial Cycle , 2001, Science.

[38]  Ruth M. Doherty,et al.  The relationship between the SOI and extended tropical precipitation in simulations of future climate change , 2002 .

[39]  S. Zebiak,et al.  On the 30–60 Day Oscillation and the Prediction of El Niño , 1989 .

[40]  P. Krishna Rao,et al.  Sea Surface Temperature , 1990 .

[41]  C.-P. Chang,et al.  A Theory for the Indian Ocean Dipole–Zonal Mode* , 2003 .

[42]  Daniel P. Schrag,et al.  El Niño during the Last Interglacial Period recorded by a fossil coral from Indonesia , 1999 .

[43]  John A. Knaff,et al.  How Much Skill Was There in Forecasting the Very Strong 1997–98 El Niño? , 2000 .

[44]  Michael J. McPhaden,et al.  Equatorial waves and the 1997–98 El Niño , 1999 .

[45]  M. Cane,et al.  A Model El Niñ–Southern Oscillation , 1987 .

[46]  Alexey Kaplan,et al.  Bias correction of an ocean‐atmosphere coupled model , 2000 .

[47]  T. Barnett,et al.  An investigation of the El Niño‐Southern Oscillation cycle With statistical models: 2. Model results , 1987 .

[48]  Lisa M. Goddard,et al.  IMPROVING SEASONAL PREDICTION PRACTICES THROUGH ATTRIBUTION OF CLIMATE VARIABILITY , 2005 .

[49]  Joel Michaelsen,et al.  An investigation of the El Niño‐Southern Oscillation cycle With statistical models: 1. Predictor field characteristics , 1987 .

[50]  Mojib Latif,et al.  Warm Pool Physics in a Coupled GCM , 1996 .

[51]  N. Graham,et al.  Current status of ENSO forecast skill: a report to the CLIVAR Working Group on Seasonal to Interannual Prediction , 2001 .

[52]  Allan J. Clarke,et al.  Improving El Niño prediction using a space‐time integration of Indo‐Pacific winds and equatorial Pacific upper ocean heat content , 2003 .

[53]  G. Meyers,et al.  Evaporative cooling of the western equatorial Pacific Ocean by anomalous winds , 1986, Nature.

[54]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[55]  Mark A. Cane,et al.  A study of self-excited oscillations of the tropical ocean-atmosphere system , 1990 .

[56]  B. Goswami,et al.  Predictability of a coupled ocean-atmosphere model , 1991 .

[57]  C. J. C. REASONa,et al.  ENSO AND CLIMATIC SIGNALS ACROSS THE INDIAN OCEAN BASIN IN THE GLOBAL CONTEXT : PART I , INTERANNUAL COMPOSITE PATTERNS , 2000 .

[58]  Peter J. Webster,et al.  Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98 , 1999, Nature.

[59]  Andrew M. Moore,et al.  Stochastic forcing of ENSO by the intraseasonal oscillation , 1999 .

[60]  Anthony C. Hirst,et al.  Interannual variability in a tropical atmosphere−ocean model: influence of the basic state, ocean geometry and nonlinearity , 1989 .

[61]  Benjamin Kirtman,et al.  Decadal Variability in ENSO Predictability and Prediction , 1998 .

[62]  Benjamin Kirtman,et al.  Multiseasonal predictions with a coupled tropical ocean-global atmosphere system , 1997 .

[63]  Allan J. Clarke,et al.  Dynamics of the Biennial Oscillation in the Equatorial Indian and Far Western Pacific Oceans , 1998 .

[64]  Timothy J. Hoar,et al.  El Niño and climate change , 1997 .

[65]  Nicholas E. Graham,et al.  Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels , 1999 .

[66]  Dake Chen,et al.  An Improved Procedure for EI Ni�o Forecasting: Implications for Predictability , 1995, Science.

[67]  Mark A. Cane,et al.  Predictability of a Coupled Model of ENSO Using Singular Vector Analysis. Part I: Optimal Growth in Seasonal Background and ENSO Cycles , 1997 .

[68]  D. Battisti,et al.  A Linear Stochastic Dynamical Model of ENSO. Part I: Model Development , 2000 .

[69]  T. Barnett,et al.  On the Prediction of the El Ni�o of 1986-1987 , 1988, Science.

[70]  Matthew D. Collins,et al.  Understanding uncertainties in the response of ENSO to greenhouse warming , 2000 .

[71]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[72]  Bin Wang,et al.  Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? , 2000 .

[73]  Michele M. Rienecker,et al.  Mechanisms for the Indian Ocean warming during the 1997–98 El Niño , 1999 .

[74]  Masamichi Inoue,et al.  A Forecasting Model for the Onset of a Major El Ni-o , 1984 .

[75]  Mojib Latif,et al.  A review of the predictability and prediction of ENSO , 1998 .

[76]  Roger Lukas,et al.  Lagrangian mixed layer modeling of the western equatorial Pacific , 1995 .

[77]  T. Barnett,et al.  ENSO and ENSO-related Predictability. Part I: Prediction of Equatorial Pacific Sea Surface Temperature with a Hybrid Coupled Ocean–Atmosphere Model , 1993 .

[78]  Peter J. Webster,et al.  The annual cycle of persistence in the El Nño/Southern Oscillation , 1998 .

[79]  J. Bjerknes ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1 , 1969 .

[80]  Nilio,et al.  A Forecasting Model for the Onset of a Major EI , 2002 .

[81]  Ralf Giering,et al.  Data assimilation by an intermediate coupled ocean‐atmosphere model: Application to the 1997–1998 El Niño , 2000 .

[82]  Michael Ghil,et al.  El Ni�o on the Devil's Staircase: Annual Subharmonic Steps to Chaos , 1994, Science.

[83]  Ming Ji,et al.  An experimental coupled forecast system at the national meteorological center: some early results , 1994 .

[84]  Yves M. Tourre,et al.  ENSO Signals in Global Upper-Ocean Temperature , 1995 .

[85]  A. Barnston,et al.  Prediction of ENSO Episodes Using Canonical Correlation Analysis , 1992 .

[86]  Richard Kleeman,et al.  A Simple Model of the Atmospheric Response to ENSO Sea Surface Temperature Anomalies , 1991 .

[87]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology , 2000 .

[88]  Michael H. Glantz,et al.  ENSO as an Integrating Concept in Earth Science , 2006, Science.

[89]  Peter J. Webster,et al.  Monsoon and Enso: Selectively Interactive Systems , 1992 .

[90]  Roger Lukas,et al.  The mixed layer of the western equatorial Pacific Ocean , 1991 .

[91]  T. Barnett,et al.  Long-Lead Seasonal ForecastsWhere Do We Stand? , 1994 .

[92]  S. Hastenrath,et al.  DIPOLES, TEMPERATURE GRADIENTS, AND TROPICAL CLIMATE ANOMALIES , 2002 .