Accelerated development of collapsing glomerulopathy in mice congenic for the HIVAN1 locus.

[1]  D. Reich,et al.  MYH9 is associated with nondiabetic end-stage renal disease in African Americans , 2008, Nature Genetics.

[2]  D. Vlahov,et al.  MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis , 2008, Nature Genetics.

[3]  Marni J. Falk,et al.  Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease , 2008, PLoS genetics.

[4]  R. Iyengar,et al.  HIV-1 Nef Disrupts the Podocyte Actin Cytoskeleton by Interacting with Diaphanous Interacting Protein* , 2008, Journal of Biological Chemistry.

[5]  J. Henderson,et al.  Mice with altered alpha-actinin-4 expression have distinct morphologic patterns of glomerular disease. , 2008, Kidney international.

[6]  V. D’Agati Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts). , 2008, Kidney international.

[7]  Eleazar Eskin,et al.  A sequence-based variation map of 8.27 million SNPs in inbred mouse strains , 2007, Nature.

[8]  A. Lalwani,et al.  Generation and Characterization of Mice with Myh9 Deficiency , 2007, NeuroMolecular Medicine.

[9]  A. Gharavi,et al.  Genetic susceptibility, HIV infection, and the kidney. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[10]  P. Janmey,et al.  HIV infection changes glomerular podocyte cytoskeletal composition and results in distinct cellular mechanical properties. , 2007, American journal of physiology. Renal physiology.

[11]  Li-jun Ma,et al.  HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. , 2006, Journal of the American Society of Nephrology : JASN.

[12]  P. Pavlidis,et al.  An ancestral haplotype defines susceptibility to doxorubicin nephropathy in the laboratory mouse. , 2006, Journal of the American Society of Nephrology : JASN.

[13]  P. Ramdial,et al.  A cross-sectional study of HIV-seropositive patients with varying degrees of proteinuria in South Africa. , 2006, Kidney international.

[14]  I. Katz,et al.  HIV-related nephropathy: a South African perspective. , 2006, Kidney international.

[15]  Scott Martinka,et al.  Persistent NF-κB activation in renal epithelial cells in a mouse model of HIV-associated nephropathy , 2006 .

[16]  V. D’Agati,et al.  HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN , 2005, AIDS.

[17]  L. Holzman,et al.  Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. , 2005, Journal of the American Society of Nephrology : JASN.

[18]  M. Madaio,et al.  The kd/kd mouse is a model of collapsing glomerulopathy. , 2005, Journal of the American Society of Nephrology : JASN.

[19]  T. Matsusaka,et al.  Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. , 2005, Kidney international.

[20]  V. D’Agati,et al.  NF-κB regulates Fas-mediated apoptosis in HIV-associated nephropathy , 2005 .

[21]  B. Rovin,et al.  The Influence of CCL 3 L 1 Gene – Containing Segmental Duplications on HIV-1 / AIDS Susceptibility , 2009 .

[22]  T. Naoe,et al.  Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. , 2004, Biochemical and biophysical research communications.

[23]  R. Iyengar,et al.  Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. , 2004, The Journal of clinical investigation.

[24]  V. D’Agati,et al.  Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Robert W. Williams,et al.  The nature and identification of quantitative trait loci: a community's view , 2003, Nature Reviews Genetics.

[26]  J. He,et al.  Critical role for Nef in HIV-1-induced podocyte dedifferentiation. , 2003, Kidney international.

[27]  E. Unanue,et al.  CD2-Associated Protein Haploinsufficiency Is Linked to Glomerular Disease Susceptibility , 2003, Science.

[28]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[29]  V. D’Agati,et al.  Pathologic classification of focal segmental glomerulosclerosis. , 2003, Seminars in nephrology.

[30]  C. Moore,et al.  Evidence of HIV-1 Adaptation to HLA-Restricted Immune Responses at a Population Level , 2002, Science.

[31]  V. D’Agati,et al.  Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. , 2001, The New England journal of medicine.

[32]  P. Fine,et al.  Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. , 2001, Journal of the American Society of Nephrology : JASN.

[33]  V. D’Agati,et al.  J Am Soc Nephrol 11: 2079–2087, 2000 Renal Epithelium Is a Previously Unrecognized Site of HIV-1 Infection , 2022 .

[34]  V. D’Agati,et al.  HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. , 2000, Kidney international.

[35]  B. Freedman,et al.  Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. , 1999, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[36]  P. Klotman,et al.  HIV-associated nephropathy is a late, not early, manifestation of HIV-1 infection. , 1999, Kidney international.

[37]  Lars Lannfelt,et al.  HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy , 1998, Nature Medicine.

[38]  J J Goedert,et al.  Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. , 1997, Science.

[39]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[40]  P. Klotman,et al.  Cutaneous disorders and viral gene expression in HIV-1 transgenic mice. , 1993, AIDS research and human retroviruses.

[41]  P. Klotman,et al.  Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Scott Martinka,et al.  Persistent NF-kappaB activation in renal epithelial cells in a mouse model of HIV-associated nephropathy. , 2006, American journal of physiology. Renal physiology.

[43]  V. D’Agati,et al.  NF-kappaB regulates Fas-mediated apoptosis in HIV-associated nephropathy. , 2005, Journal of the American Society of Nephrology : JASN.

[44]  R. Ravazzolo,et al.  Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). , 2003, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[45]  M. Soto,et al.  Familial collapsing glomerulopathy: clinical, pathological and immunogenetic features. , 2003, Kidney international.

[46]  G. Appel,et al.  Collapsing glomerulopathy. , 2003, Seminars in nephrology.

[47]  A. Darvasi,et al.  Experimental strategies for the genetic dissection of complex traits in animal models , 1998, Nature Genetics.

[48]  V. D’Agati,et al.  HIV infection and the kidney. , 1997, Journal of the American Society of Nephrology : JASN.