Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing

[1]  Zhen Yang,et al.  LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases , 2018, Nucleic Acids Res..

[2]  Matthew J Tarchick,et al.  Where You Cut Matters: A Dissection and Analysis Guide for the Spatial Orientation of the Mouse Retina from Ocular Landmarks , 2018, Journal of visualized experiments : JoVE.

[3]  Michael Q. Zhang,et al.  NONCODEV5: a comprehensive annotation database for long non-coding RNAs , 2017, Nucleic Acids Res..

[4]  Xiaoting Zhao,et al.  The Long Noncoding RNA Landscape of the Mouse Eye. , 2017, Investigative ophthalmology & visual science.

[5]  H. Fujieda,et al.  Cell type-specific effects of p27KIP1 loss on retinal development , 2017, Neural Development.

[6]  A. Swaroop,et al.  Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL , 2017, Investigative ophthalmology & visual science.

[7]  R. Guigó,et al.  Comparative transcriptomics in human and mouse , 2017, Nature Reviews Genetics.

[8]  Brian S. Clark,et al.  Understanding the Role of lncRNAs in Nervous System Development. , 2017, Advances in experimental medicine and biology.

[9]  W. Su,et al.  Precise long non-coding RNA modulation in visual maintenance and impairment , 2016, Journal of Medical Genetics.

[10]  Jin Yao,et al.  Long non‐coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling , 2016, EMBO molecular medicine.

[11]  Lei Chen,et al.  Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus) , 2016, BMC Genomics.

[12]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[13]  Wanfei Liu,et al.  Identification and analysis of mouse non-coding RNA using transcriptome data , 2016, Science China Life Sciences.

[14]  B. Roska,et al.  A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture , 2015, Nature Communications.

[15]  Q. Jiang,et al.  Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus , 2014, Cell Death and Disease.

[16]  Leena Salmela,et al.  LoRDEC: accurate and efficient long read error correction , 2014, Bioinform..

[17]  X. Mu,et al.  Isl1 and Pou4f2 Form a Complex to Regulate Target Genes in Developing Retinal Ganglion Cells , 2014, PloS one.

[18]  A. Fatica,et al.  Long non-coding RNAs: new players in cell differentiation and development , 2013, Nature Reviews Genetics.

[19]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[20]  V. Lefebvre,et al.  Transcription Factors SOX4 and SOX11 Function Redundantly to Regulate the Development of Mouse Retinal Ganglion Cells* , 2013, The Journal of Biological Chemistry.

[21]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[22]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[23]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[24]  M. Xiang Intrinsic control of mammalian retinogenesis , 2013, Cellular and Molecular Life Sciences.

[25]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[26]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[27]  Erin A. Bassett,et al.  Cell fate determination in the vertebrate retina , 2012, Trends in Neurosciences.

[28]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[29]  Michael F. Lin,et al.  Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. , 2012, Genome research.

[30]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[31]  E. Surace,et al.  The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. , 2012, RNA.

[32]  S. Blackshaw,et al.  The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity , 2011, Neural Development.

[33]  D. Watanabe,et al.  miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression , 2011, Nature Neuroscience.

[34]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[35]  S. Blackshaw,et al.  articleThe long noncoding RNA RNCR 2 directs mouse retinal cell specification , 2010 .

[36]  T. Reh,et al.  Dicer Is Required for the Transition from Early to Late Progenitor State in the Developing Mouse Retina , 2010, The Journal of Neuroscience.

[37]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  X. Mu,et al.  Gene-regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2 , 2008, Proceedings of the National Academy of Sciences.

[40]  Michael B. Stadler,et al.  Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling , 2007, The Journal of comparative neurology.

[41]  Takayuki Harada,et al.  Molecular regulation of visual system development: more than meets the eye. , 2007, Genes & development.

[42]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[43]  C. Cepko,et al.  The Noncoding RNA Taurine Upregulated Gene 1 Is Required for Differentiation of the Murine Retina , 2005, Current Biology.

[44]  L. Pan,et al.  Math5 determines the competence state of retinal ganglion cell progenitors. , 2003, Developmental biology.

[45]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[46]  T. Glaser,et al.  Math5 is required for retinal ganglion cell and optic nerve formation. , 2001, Development.

[47]  F. J. Livesey,et al.  Vertebrate neural cell-fate determination: Lessons from the retina , 2001, Nature Reviews Neuroscience.

[48]  R. Johnson,et al.  Requirement for math5 in the development of retinal ganglion cells. , 2001, Genes & development.

[49]  W. Klein,et al.  POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. , 1999, Developmental biology.

[50]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[51]  Michael G. Rosenfeld,et al.  Role of transcription factors a Brn-3.1 and Brn-3.2 in auditory and visual system development , 1996, Nature.

[52]  J. Nathans,et al.  POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Cepko,et al.  Cell fate determination in the vertebrate retina. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Nathans,et al.  The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.