Torque spectroscopy for the study of rotary motion in biological systems.

Systems Jan Lipfert,†,‡ Maarten M. van Oene,‡ Mina Lee,‡ Francesco Pedaci,‡,§ and Nynke H. Dekker*,‡ †Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience (CeNS), Ludwig-Maximilian-University Munich, Amalienstrasse 54, 80799 Munich, Germany ‡Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Department of Single-Molecule Biophysics, Centre de Biochimie Structurale, UMR 5048 CNRS, 34090 Montpellier, France

[1]  Michael D. Stone,et al.  Mechanochemical analysis of DNA gyrase using rotor bead tracking , 2006, Nature.

[2]  Ulrich F Keyser,et al.  Real-time particle tracking at 10,000 fps using optical fiber illumination. , 2010, Optics express.

[3]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .

[4]  N. Cozzarelli,et al.  The mechanism of type IA topoisomerases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Francesco S. Pavone,et al.  Spin absorption, windmill, and magneto-optic effects in optical angular momentum transfer , 2004 .

[6]  H. Berg,et al.  Adaptation kinetics in bacterial chemotaxis , 1983, Journal of bacteriology.

[7]  G. Shivashankar,et al.  RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[9]  Ken Halvorsen,et al.  Beyond the frame rate: measuring high-frequency fluctuations with light-intensity modulation. , 2008, Optics letters.

[10]  S. Busby,et al.  Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. , 2010, Current opinion in microbiology.

[11]  Francesco Pedaci,et al.  Electron beam fabrication of birefringent microcylinders. , 2011, ACS nano.

[12]  T. Przytycka,et al.  Transcription dependent dynamic supercoiling is a short-range genomic force , 2013, Nature Structural &Molecular Biology.

[13]  T. Strick,et al.  Homologous pairing in stretched supercoiled DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[15]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[16]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.

[18]  Keir C. Neuman,et al.  Single-Molecule Micromanipulation Techniques , 2007 .

[19]  H. Berg,et al.  Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Hiroyasu Itoh,et al.  Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase , 2001, Nature.

[21]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[22]  Halina Rubinsztein-Dunlop,et al.  Synthesis and surface modification of birefringent vaterite microspheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[23]  Masaru Kawakami,et al.  Single-molecule biophysics : experiment and theory , 2011 .

[24]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[25]  Francesco S. Pavone,et al.  Continuous and time-shared multiple optical tweezers for the study of single motor proteins , 2007 .

[26]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[27]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.

[28]  Scott Forth,et al.  Torque measurement at the single-molecule level. , 2013, Annual review of biophysics.

[29]  Fan Bai,et al.  Torque–speed relationship of the bacterial flagellar motor , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Junge,et al.  Intersubunit rotation in active F-ATPase , 1996, Nature.

[31]  M. Simon,et al.  Localization of proteins controlling motility and chemotaxis in Escherichia coli , 1977, Journal of bacteriology.

[32]  R. Vale,et al.  Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia , 1988, Cell.

[33]  H. Berg,et al.  Mechanical limits of bacterial flagellar motors probed by electrorotation. , 1995, Biophysical journal.

[34]  J. Lipfert,et al.  Single-molecule magnetic tweezers studies of type IB topoisomerases. , 2009, Methods in molecular biology.

[35]  Yoshie Harada,et al.  Direct observation of the reversible unwinding of a single DNA molecule caused by the intercalation of ethidium bromide , 2007, Nucleic acids research.

[36]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[37]  M. Dutreix,et al.  Twisting and untwisting a single DNA molecule covered by RecA protein. , 2004, Biophysical journal.

[38]  R Lavery,et al.  Stretched and overwound DNA forms a Pauling-like structure with exposed bases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  N. Ribeck,et al.  Multiplexed single-molecule measurements with magnetic tweezers. , 2008, The Review of scientific instruments.

[40]  Thierry Viard,et al.  Giant proteins that move DNA: bullies of the genomic playground , 2006, Nature Reviews Molecular Cell Biology.

[41]  Masasuke Yoshida,et al.  Effect of external torque on the ATP-driven rotation of F1-ATPase. , 2008, Biochemical and biophysical research communications.

[42]  N H Dekker,et al.  Single-molecule measurements of the persistence length of double-stranded RNA. , 2005, Biophysical journal.

[43]  Masasuke Yoshida,et al.  ATP synthase — a marvellous rotary engine of the cell , 2001, Nature Reviews Molecular Cell Biology.

[44]  Hao Yan,et al.  DNA origami: a history and current perspective. , 2010, Current opinion in chemical biology.

[45]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[46]  N. Pavletich,et al.  Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures , 2008, Nature.

[47]  T. Jones,et al.  Basic theory of dielectrophoresis and electrorotation , 2003, IEEE Engineering in Medicine and Biology Magazine.

[48]  S Keen,et al.  Comparison of Faxén's correction for a microsphere translating or rotating near a surface. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  A. Dittmore,et al.  A high-speed magnetic tweezer beyond 10,000 frames per second. , 2013, The Review of scientific instruments.

[50]  Gorachand Ghosh,et al.  Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals , 1999 .

[51]  J. Berger,et al.  ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA , 2012, Nature Structural &Molecular Biology.

[52]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[53]  H. Berg,et al.  Resurrection of the flagellar rotary motor near zero load , 2008, Proceedings of the National Academy of Sciences.

[54]  Steven M. Block,et al.  Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping , 2009, Proceedings of the National Academy of Sciences.

[55]  E. Nudler,et al.  RNA polymerase holoenzyme: structure, function and biological implications. , 2003, Current opinion in microbiology.

[56]  S. Smith,et al.  Polymerization and mechanical properties of single RecA-DNA filaments. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[58]  H. Berg,et al.  Torque-speed relationship of the flagellar rotary motor of Escherichia coli. , 2000, Biophysical journal.

[59]  M. Dutreix,et al.  Real-time measurements of the nucleation, growth and dissociation of single Rad51–DNA nucleoprotein filaments , 2007, Nucleic acids research.

[60]  Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation. , 2005, Optics express.

[61]  A. Mondragón,et al.  Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism , 2007, Proceedings of the National Academy of Sciences.

[62]  J. Lipfert,et al.  Torsional sensing of small-molecule binding using magnetic tweezers , 2010, Nucleic acids research.

[63]  S. Adhya,et al.  Effect of varying the supercoiling of DNA on transcription and its regulation. , 2003, Biochemistry.

[64]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[65]  William S. Ryu,et al.  Real-Time Imaging of Fluorescent Flagellar Filaments , 2000, Journal of bacteriology.

[66]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[67]  S. Kawata,et al.  Three-dimensional microfabrication with two-photon-absorbed photopolymerization. , 1997, Optics letters.

[68]  Michelle D. Wang,et al.  Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. , 2011, Physical review letters.

[69]  Simon Hanna,et al.  Polarization-induced torque in optical traps , 2007 .

[70]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[71]  Nynke H Dekker,et al.  Quantitative modeling and optimization of magnetic tweezers. , 2009, Biophysical journal.

[72]  Nynke H. Dekker,et al.  Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. , 2012, Nano letters.

[73]  Zhifang Lin,et al.  Radiation torque on a birefringent sphere caused by an electromagnetic wave. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[75]  N. Loman,et al.  Bacterial flagellar diversity and evolution: seek simplicity and distrust it? , 2009, Trends in microbiology.

[76]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli. , 1993, Biophysical journal.

[77]  P. Ormos,et al.  Rotation of microscopic propellers in laser tweezers , 2002 .

[78]  R. Seidel,et al.  DNA-DNA interactions in tight supercoils are described by a small effective charge density. , 2010, Physical review letters.

[79]  Wesley P. Wong,et al.  The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. , 2006, Optics express.

[80]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Gilles Charvin,et al.  Stretching of macromolecules and proteins , 2003 .

[82]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[83]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[84]  Peter Searson,et al.  Magnetic tweezers measurement of single molecule torque. , 2009, Nano letters.

[85]  Thad G Walker,et al.  Nonlinear motion of optically torqued nanorods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Francesco Pedaci,et al.  Calibration of the optical torque wrench. , 2012, Optics express.

[87]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[88]  Michelle D. Wang,et al.  Transcription Under Torsion , 2013, Science.

[89]  David Bensimon,et al.  Single-molecule analysis of DNA uncoiling by a type II topoisomerase , 2000, Nature.

[90]  H. Bryant,et al.  Magnetic needles and superparamagnetic cells , 2007, Physics in medicine and biology.

[91]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[92]  Michelle D. Wang,et al.  Twist-stretch coupling and phase transition during DNA supercoiling. , 2009, Physical chemistry chemical physics : PCCP.

[93]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[94]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[95]  Bruce R. Selman,et al.  Energy coupling in photosynthesis : proceedings of the Eleventh Harry Steenbock Symposium held 6-8 July, 1981 at the University of Wisconsin-Madison, Madison, Wisconsin, U.S.A. , 1981 .

[96]  Richard E. Dickerson,et al.  Structure of a B-DNA dodecamer at 16 K. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[97]  N R Cozzarelli,et al.  Conformational and thermodynamic properties of supercoiled DNA. , 1994, Annual review of biophysics and biomolecular structure.

[98]  M. Washizu,et al.  Dielectrophoretic measurement of bacterial motor characteristics , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[99]  J. Roca The torsional state of DNA within the chromosome , 2011, Chromosoma.

[100]  Howard C. Berg,et al.  On Torque and Tumbling in Swimming Escherichia coli , 2006, Journal of bacteriology.

[101]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[102]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[103]  Pál Ormos,et al.  Rotors produced and driven in laser tweezers with reversed direction of rotation , 2002 .

[104]  Seok-Cheol Hong,et al.  Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension , 2010, Proceedings of the National Academy of Sciences.

[105]  R. Watson,et al.  The twisted circular form of polyoma viral DNA. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Hiroshi Masuhara,et al.  Laser-Scanning Micromanipulation and Spatial Patterning of Fine Particles , 1991 .

[107]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[108]  J. Lipfert,et al.  A method to track rotational motion for use in single-molecule biophysics. , 2011, The Review of scientific instruments.

[109]  H. Berg,et al.  Restoration of torque in defective flagellar motors. , 1988, Science.

[110]  E. Herrero-Galán,et al.  Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. , 2013, Journal of the American Chemical Society.

[111]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[112]  D. Grier A revolution in optical manipulation , 2003, Nature.

[113]  C. Dekker,et al.  Highly parallel magnetic tweezers by targeted DNA tethering. , 2011, Nano letters.

[114]  V. V. Bulygin,et al.  Rotation of subunits during catalysis by Escherichia coli F1-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[115]  David Bensimon,et al.  Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers. , 2009, Physical review letters.

[116]  S. Strogatz,et al.  Structure of chromatin and the linking number of DNA. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. Marko Torque and dynamics of linking number relaxation in stretched supercoiled DNA. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  M. Bjornsti,et al.  Cellular Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective , 2010, Cell.

[119]  R L Cross,et al.  Subunit rotation in Escherichia coli FoF1-ATP synthase during oxidative phosphorylation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[120]  R. Berry,et al.  Mechanism and kinetics of a sodium-driven bacterial flagellar motor , 2013, Proceedings of the National Academy of Sciences.

[121]  J. Viovy,et al.  Direct observation of twisting steps during Rad51 polymerization on DNA , 2009, Proceedings of the National Academy of Sciences.

[122]  Paul V. Ruijgrok,et al.  Brownian fluctuations and heating of an optically aligned gold nanorod. , 2011, Physical review letters.

[123]  H. Noji,et al.  Chemomechanical coupling mechanism of F 1‐ATPase: Catalysis and torque generation , 2013, FEBS letters.

[124]  Michio Homma,et al.  Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. , 2008, Journal of molecular biology.

[125]  H. Ochman,et al.  Origins of Flagellar Gene Operons and Secondary Flagellar Systems , 2007, Journal of bacteriology.

[126]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[127]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[128]  J. Armitage,et al.  The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[129]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[130]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[131]  Zev Bryant,et al.  Gold rotor bead tracking (AuRBT) for high-speed measurements of DNA twist, torque, and extension , 2014, Nature Methods.

[132]  P. Rothemund,et al.  Nanotechnology: The importance of being modular , 2012, Nature.

[133]  H. Berg,et al.  Compliance of bacterial polyhooks measured with optical tweezers. , 1991, Cytometry.

[134]  M. Prins,et al.  On-chip manipulation and detection of magnetic particles for functional biosensors. , 2008, Biosensors & bioelectronics.

[135]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[136]  Sean X. Sun,et al.  Torsional mechanics of DNA are regulated by small-molecule intercalation. , 2010, The journal of physical chemistry. B.

[137]  G. W. Hatfield,et al.  DNA topology-mediated control of global gene expression in Escherichia coli. , 2002, Annual review of genetics.

[138]  Vikram Vijayan,et al.  Oscillations in supercoiling drive circadian gene expression in cyanobacteria , 2009, Proceedings of the National Academy of Sciences.

[139]  Halina Rubinsztein-Dunlop,et al.  Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. , 2009, Optics express.

[140]  P. Ormos,et al.  Direct measurement of torque in an optical trap and its application to double-strand DNA. , 2006, Physical review letters.

[141]  Francesco Mosconi,et al.  Soft magnetic tweezers: a proof of principle. , 2011, The Review of scientific instruments.

[142]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[143]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[144]  R. Yasuda,et al.  Direct measurement of the torsional rigidity of single actin filaments. , 1996, Journal of molecular biology.

[145]  H. Berg,et al.  Dynamic properties of bacterial flagellar motors , 1974, Nature.

[146]  Bob M Lansdorp,et al.  Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. , 2012, The Review of scientific instruments.

[147]  Edward D. Salmon,et al.  The Drosophila claret segregation protein is a minus-end directed motor molecule , 1990, Nature.

[148]  Steven M. Block,et al.  Compliance of bacterial flagella measured with optical tweezers , 1989, Nature.

[149]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[150]  A. Mazin,et al.  Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[151]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[152]  David G Grier,et al.  Modulated optical vortices. , 2003, Optics letters.

[153]  A. Stasiak,et al.  Probing Rad51-DNA interactions by changing DNA twist , 2012, Nucleic acids research.

[154]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[155]  L. Mirny,et al.  Higher-order chromatin structure: bridging physics and biology. , 2012, Current opinion in genetics & development.

[156]  K. Namba,et al.  Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits , 2007, Proceedings of the National Academy of Sciences.

[157]  Alfred Nordheim,et al.  THE CHEMISTRY AND BIOLOGY OF LEFT-HANDED Z-DNA , 1984 .

[158]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[159]  M. Gellert,et al.  Regulation of the genes for E. coli DNA gyrase: Homeostatic control of DNA supercoiling , 1983, Cell.

[160]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[161]  N. Cozzarelli,et al.  DNA overwinds when stretched , 2006, Nature.

[162]  S. Shuman,et al.  Dynamics of phosphodiester synthesis by DNA ligase , 2008, Proceedings of the National Academy of Sciences.

[163]  H. Faxén Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist , 1922 .

[164]  J. Lebbink,et al.  Torsional regulation of hRPA-induced unwinding of double-stranded DNA , 2010, Nucleic acids research.

[165]  Halina Rubinsztein-Dunlop,et al.  Optically driven micromachine elements , 2001 .

[166]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[167]  T M Jovin,et al.  Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). , 1972, Journal of molecular biology.

[168]  Simon Hanna,et al.  Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. , 2011, Optics express.

[169]  A. Rich,et al.  The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). , 1989, The Journal of biological chemistry.

[170]  M. Rief,et al.  Torque generation of kinesin motors is governed by the stability of the neck domain. , 2012, Molecular cell.

[171]  Jen-Chien Chang,et al.  Fabrication of birefringent nanocylinders for single-molecule force and torque measurement. , 2014, Nanotechnology.

[172]  K R Foster,et al.  Electrorotation and levitation of cells and colloidal particles. , 1992, Biophysical journal.

[173]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[174]  C. Dekker,et al.  Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules , 2007, Nucleic acids research.

[175]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[176]  S. Neukirch,et al.  Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[177]  F. Oosawa,et al.  The loose coupling mechanism in molecular machines of living cells. , 1986, Advances in biophysics.

[178]  Michio Homma,et al.  Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. , 2003, Journal of molecular biology.

[179]  R. Seidel,et al.  Supporting Material : Probing the Elasticity of DNA on Short Length Scales by Modeling Supercoiling under Tension , 2012 .

[180]  Steven M Block,et al.  An optical apparatus for rotation and trapping. , 2010, Methods in enzymology.

[181]  K. Jarrell,et al.  Prokaryotic motility structures. , 2003, Microbiology.

[182]  R. Kornberg,et al.  Structure of chromatin. , 1977, Annual review of biochemistry.

[183]  Nynke H. Dekker,et al.  Studying genomic processes at the single-molecule level: introducing the tools and applications , 2012, Nature Reviews Genetics.

[184]  R. Berry,et al.  Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. , 2007, Biophysical journal.

[185]  M. Prins,et al.  Torsion profiling of proteins using magnetic particles. , 2013, Biophysical journal.

[186]  William S. Ryu,et al.  Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio , 2000, Nature.

[187]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[188]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[189]  J P Cnossen,et al.  An optimized software framework for real-time, high-throughput tracking of spherical beads. , 2014, The Review of scientific instruments.

[190]  Kishan Dholakia,et al.  Light forces the pace: optical manipulation for biophotonics. , 2010, Journal of biomedical optics.

[191]  Norman R. Heckenberg,et al.  Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization , 2009 .

[192]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[193]  H. Schiessel,et al.  Multiplectoneme phase of double-stranded DNA under torsion. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[194]  Jacob W J Kerssemakers,et al.  Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. , 2010, Biophysical journal.

[195]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[196]  Y. Kagawa,et al.  Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[197]  Ralf Seidel,et al.  Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. , 2009, Physical review letters.

[198]  Florian C. Oberstrass,et al.  Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA , 2012, Proceedings of the National Academy of Sciences.

[199]  S. Block,et al.  Versatile optical traps with feedback control. , 1998, Methods in enzymology.

[200]  Yoshie Harada,et al.  Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvA-RuvB protein complex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Masasuke Yoshida,et al.  Mechanical modulation of catalytic power on F1-ATPase. , 2011, Nature chemical biology.

[202]  K. Namba,et al.  Common Evolutionary Origin for the Rotor Domain of Rotary Atpases and Flagellar Protein Export Apparatus , 2013, PloS one.

[203]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[204]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[205]  Graham F Hatfull,et al.  Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase , 2011, Proceedings of the National Academy of Sciences.

[206]  Scott Forth,et al.  Passive torque wrench and angular position detection using a single-beam optical trap. , 2010, Optics letters.

[207]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[208]  Kurt D. Wulff,et al.  Controlled rotation of birefringent particles in an optical trap. , 2008, Applied optics.

[209]  Francesco S Pavone,et al.  Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. , 2013, Biophysical journal.

[210]  Hiroyasu Itoh,et al.  Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase , 2001, Nature.

[211]  C. Dekker,et al.  Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB , 2005, Nature.

[212]  C. Dekker,et al.  Torque-limited RecA polymerization on dsDNA , 2005, Nucleic acids research.

[213]  J. Wang,et al.  Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine , 1998, Quarterly Reviews of Biophysics.

[214]  Miles J. Padgett,et al.  Light with a twist in its tail , 2000 .

[215]  Norman R. Heckenberg,et al.  Optically trapped and driven paddle-wheel , 2013 .

[216]  Michio Homma,et al.  Direct observation of steps in rotation of the bacterial flagellar motor , 2005, Nature.

[217]  Daniel A. Koster,et al.  Antitumour drugs impede DNA uncoiling by topoisomerase I , 2007, Nature.

[218]  Fan Bai,et al.  A programmable optical angle clamp for rotary molecular motors. , 2007, Biophysical journal.

[219]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[220]  Shoichi Toyabe,et al.  Thermodynamic efficiency and mechanochemical coupling of F1-ATPase , 2011, Proceedings of the National Academy of Sciences.

[221]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[222]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[223]  Peter Hinterdorfer,et al.  Handbook of single-molecule biophysics , 2009 .

[224]  Florian C. Oberstrass,et al.  Torque spectroscopy of DNA: base-pair stability, boundary effects, backbending, and breathing dynamics. , 2013, Physical review letters.

[225]  N. Osheroff,et al.  DNA topoisomerase protocols , 1999 .

[226]  H. Berg,et al.  Torque generated by the bacterial flagellar motor close to stall. , 1996, Biophysical journal.

[227]  J. Lipfert,et al.  Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament , 2013, Nucleic acids research.

[228]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.