Higgs pair production at the LHC with NLO and parton-shower effects

We present predictions for the SM-Higgs-pair production channels of relevance at the LHC: gluon–gluon fusion, VBF, and top-pair, W, Z and single-top associated production. All these results are at the NLO accuracy in QCD, and matched to parton showers by means of the MC@NLO method; hence, they are fully differential. With the exception of the gluon–gluon fusion process, for which a special treatment is needed in order to improve upon the infinite-top-mass limit, our predictions are obtained in a fully automatic way within the publicly available MadGraph5_aMC@NLO framework. We show that for all channels in general, and for gluon–gluon fusion and top-pair associated production in particular, NLO corrections reduce the theoretical uncertainties, and are needed in order to arrive at reliable predictions for total rates as well as for distributions.

[1]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[2]  T. Figy NEXT-TO-LEADING ORDER QCD CORRECTIONS TO LIGHT HIGGS PAIR PRODUCTION VIA VECTOR BOSON FUSION , 2008, 0806.2200.

[3]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[4]  A. Wulzer,et al.  Anomalous couplings in double Higgs production , 2012, 1205.5444.

[5]  S. Karg,et al.  Multi-Higgs boson production in the standard model and beyond , 2006 .

[6]  L. Lönnblad,et al.  Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions , 2007, 0706.2569.

[7]  Tim Stelzer,et al.  Automation of next-to-leading order computations in QCD: the FKS subtraction , 2009, 0908.4272.

[8]  Matthias Steinhauser,et al.  On the Higgs boson pair production at the LHC , 2013, 1305.7340.

[9]  Michael Spira,et al.  Neutral Higgs-Boson Pair Production at Hadron Colliders: QCD Corrections , 1998 .

[10]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[11]  S. Dawson,et al.  Unravelling an extended quark sector through multiple Higgs production , 2012, 1210.6663.

[12]  Giovanni Ossola,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[13]  Predictions for all processes e + e - → fermions + γ , 1999, hep-ph/9904472.

[14]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[15]  F. Maltoni,et al.  Higgs boson production via vector-boson fusion at next-to-next-to-leading order in QCD. , 2010, Physical review letters.

[16]  Rikkert Frederix,et al.  Automation of one-loop QCD computations , 2011, 1103.0621.

[17]  Jian Wang,et al.  Threshold resummation effects in Higgs boson pair production at the LHC , 2013, 1301.1245.

[18]  Adam Martin,et al.  Enhanced di-Higgs Production through Light Colored Scalars , 2012, 1207.4496.

[19]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[20]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[21]  Veronica Sanz,et al.  Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production , 2013, 1303.6636.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Johan Alwall,et al.  QCD Radiation in the Production of Heavy Colored Particles at the LHC , 2008, 0810.5350.

[24]  S. Frixione,et al.  Matching NLO QCD computations and parton shower simulations , 2002, hep-ph/0204244.

[25]  S. Frixione A general approach to jet cross sections in QCD , 1997, hep-ph/9706545.

[26]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[27]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[28]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[29]  Qiang Li,et al.  Higgs pair production: Improved description by matrix element matching , 2013, 1312.3830.

[30]  Matthew J. Dolan,et al.  New physics in LHC Higgs boson pair production , 2012, 1210.8166.

[31]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[32]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[33]  Multijet matrix elements and shower evolution in hadronic collisions: -jets as a case study ☆ , 2001, hep-ph/0108069.

[34]  Rikkert Frederix,et al.  Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties , 2012, Journal of High Energy Physics.

[35]  A. Denner,et al.  Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.

[36]  P. Maierhöfer,et al.  Higgs boson pair production merged to one jet , 2013, 1401.0007.

[37]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.

[38]  Z. Kunszt,et al.  Three-jet cross sections to next-to-leading order , 1995, hep-ph/9512328.

[39]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[40]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[41]  Yasuhiro Okada,et al.  Higgs boson pair production in new physics models at hadron, lepton, and photon colliders , 2010, 1009.4670.

[42]  S. Moretti,et al.  HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) , 2001 .

[43]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2013, Physical review letters.

[44]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[45]  U. Baur,et al.  Measuring the Higgs boson self-coupling at the Large Hadron Collider. , 2002, Physical review letters.