Nilpotent Structures in Ergodic Theory
暂无分享,去创建一个
[1] N. Krylov,et al. Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations , 2018, Mathematical Surveys and Monographs.
[2] Stephen D Smith,et al. Applying the Classification of Finite Simple Groups: A User's Guide , 2018 .
[3] A. Molev. Sugawara Operators for Classical Lie Algebras , 2018 .
[4] Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras , 2018 .
[5] M. Aguiar,et al. Topics in Hyperplane Arrangements , 2017 .
[6] Anh N. Le. Nilsequences and multiple correlations along subsequences , 2017, Ergodic Theory and Dynamical Systems.
[7] Gaven Martin,et al. An Introduction to the Theory of Higher-dimensional Quasiconformal Mappings , 2017 .
[8] R. Frigerio. Bounded cohomology of discrete groups , 2016, 1610.08339.
[9] F. Richter,et al. A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems , 2016, Ergodic Theory and Dynamical Systems.
[10] S. Donoso,et al. Pointwise convergence of some multiple ergodic averages , 2016, 1609.02529.
[11] Yonatan Gutman,et al. The structure theory of nilspaces I , 2016, Journal d'Analyse Mathématique.
[12] Andreas Koutsogiannis. Closest integer polynomial multiple recurrence along shifted primes , 2015, Ergodic Theory and Dynamical Systems.
[13] B. Host,et al. Weighted multiple ergodic averages and correlation sequences , 2015, Ergodic Theory and Dynamical Systems.
[14] S. Donoso,et al. Pointwise multiple averages for systems with two commuting transformations , 2015, Ergodic Theory and Dynamical Systems.
[15] R. Bieri,et al. On Groups of PL-homeomorphisms of the Real Line , 2014, 1411.2868.
[16] S. Donoso,et al. A pointwise cubic average for two commuting transformations , 2014, 1410.4887.
[17] S. Klainerman,et al. Shock Formation in Small-Data Solutions to $3D$ Quasilinear Wave Equations: An Overview , 2014, 1407.6320.
[18] Wen Huang,et al. Nil Bohr-sets and almost automorphy of higher order , 2014, 1407.1179.
[19] N. Frantzikinakis. Multiple correlation sequences and nilsequences , 2014, Inventiones mathematicae.
[20] Wen Huang,et al. Pointwise convergence of multiple ergodic averages and strictly ergodic models , 2014, Journal d'Analyse Mathématique.
[21] S. Donoso,et al. Dynamical cubes and a criteria for systems having products extensions , 2014, 1406.1220.
[22] B. Host,et al. Higher order Fourier analysis of multiplicative functions and applications , 2014, 1403.0945.
[23] E. Glasner. $RP^{[d]}$ is an equivalence relation: An enveloping semigroup proof , 2014, 1402.3135.
[24] Tim Austin. A Proof of Walsh's Convergence Theorem Using Couplings , 2013, 1310.3219.
[25] Q. Chu,et al. Lower bound in the Roth theorem for amenable groups , 2013, Ergodic Theory and Dynamical Systems.
[26] M. Wierdl,et al. Random differences in Szemerédi’s theorem and related results , 2013, Journal d'Analyse Mathématique.
[27] T. Tao,et al. A multi-dimensional Szemerédi theorem for the primes via a correspondence principle , 2013, Israel Journal of Mathematics.
[28] X. Ye,et al. Dynamical Parallelepipeds in Minimal Systems , 2013, Journal of Dynamics and Differential Equations.
[29] Wenbo Sun. Multiple recurrence and convergence for certain averages along shifted primes , 2013, Ergodic Theory and Dynamical Systems.
[30] Pavel Zorin-Kranich. Cube spaces and the multiple term return times theorem , 2012, Ergodic Theory and Dynamical Systems.
[31] T. Eisner,et al. Uniformity in the Wiener-Wintner theorem for nilsequences , 2012, 1208.3977.
[32] A. Leibman. Nilsequences, null-sequences, and multiple correlation sequences , 2012, Ergodic Theory and Dynamical Systems.
[33] A. Maass,et al. Complexity of nilsystems and systems lacking nilfactors , 2012, 1203.3778.
[34] N. Frantzikinakis. A multidimensional Szemerédi theorem for Hardy sequences of different growth , 2012, 1202.4784.
[35] Pavel Zorin-Kranich. Norm convergence of multiple ergodic averages on amenable groups , 2011, 1111.7292.
[36] M. N. Walsh. Norm convergence of nilpotent ergodic averages , 2011, 1109.2922.
[37] N. Frantzikinakis,et al. Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations , 2011, Ergodic Theory and Dynamical Systems.
[38] Tim Austin. Norm convergence of continuous-time polynomial multiple ergodic averages , 2011, Ergodic Theory and Dynamical Systems.
[39] Terence Tao,et al. The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic , 2011, 1101.1469.
[40] Nikos Frantzikinakis,et al. Random Sequences and Pointwise Convergence of Multiple Ergodic Averages , 2010, 1012.1130.
[41] Bryna Kra,et al. A point of view on Gowers uniformity norms , 2010, 1010.0414.
[42] M. Einsiedler,et al. Ergodic Theory: with a view towards Number Theory , 2010 .
[43] M. Bonk,et al. Expanding Thurston Maps , 2010, 1009.3647.
[44] Bryna Kra,et al. The polynomial multidimensional Szemerédi Theorem along shifted primes , 2010, 1009.1484.
[45] I. Assani. Pointwise convergence of ergodic averages along cubes , 2010 .
[46] X. Ye,et al. Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence , 2010, 1007.0189.
[47] Ben Green,et al. An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.
[48] Ben Green,et al. An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.
[49] Trevor D. Wooley,et al. Multiple recurrence and convergence along the primes , 2010, 1001.4081.
[50] Q. Chu. Multiple recurrence for two commuting transformations , 2009, Ergodic Theory and Dynamical Systems.
[51] B. Host,et al. Ergodic averages of commuting transformations with distinct degree polynomial iterates , 2009, 0912.2641.
[52] A. Leibman. Orbit of the diagonal in the power of a nilmanifold , 2009 .
[53] Amanda J. Potts. Multiple ergodic averages for flows and an application , 2009, 0910.3687.
[54] Bryna Kra,et al. Uniformity seminorms on ℓ∞ and applications , 2009 .
[55] Terence Tao,et al. Poincare's Legacies: Pages from Year Two of a Mathematical Blog , 2009 .
[56] A. Leibman. Multiple polynomial correlation sequences and nilsequences , 2009, Ergodic Theory and Dynamical Systems.
[57] Michael C. R. Johnson. Convergence of polynomial ergodic averages of several variables for some commuting transformations , 2009, 0906.3266.
[58] A. Maass,et al. Nilsequences and a structure theorem for topological dynamical systems , 2009, Advances in Mathematics.
[59] Tim Austin. Pleasant extensions retaining algebraic structure, I , 2009, 0905.0518.
[60] N. Frantzikinakis. Multiple recurrence and convergence for hardy sequences of polynomial growth , 2009, 0903.0042.
[61] Q. Chu. Convergence of multiple ergodic averages along cubes for several commuting transformations , 2008, 0811.3953.
[62] B. Host. Ergodic seminorms for commuting transformations and applications , 2008, 0811.3703.
[63] W. T. Gowers,et al. Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.
[64] N. Frantzikinakis. Equidistribution of sparse sequences on nilmanifolds , 2008, 0810.4661.
[65] M. Wierdl,et al. Powers of sequences and convergence of ergodic averages , 2008, Ergodic Theory and Dynamical Systems.
[66] T. Tao,et al. The Mobius function is strongly orthogonal to nilsequences , 2008, 0807.1736.
[67] Tim Austin. On the norm convergence of non-conventional ergodic averages , 2008, Ergodic Theory and Dynamical Systems.
[68] Q. Chu. Convergence of weighted polynomial multiple ergodic averages , 2008, 0802.3138.
[69] M. Wierdl,et al. A Hardy field extension of Szemerédi's theorem , 2008, 0802.2734.
[70] T. Tao,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[71] P. Kurlberg,et al. The Dynamical Mordell-lang Conjecture , 2007, 0712.2344.
[72] M. Wierdl,et al. Powers of sequences and recurrence , 2007, 0711.3159.
[73] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[74] Ben Green,et al. The quantitative behaviour of polynomial orbits on nilmanifolds , 2007, 0709.3562.
[75] Terence Tao,et al. Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.
[76] A. Leibman. Orbits on a nilmanifold under the action of a polynomial sequence of translations , 2007, Ergodic Theory and Dynamical Systems.
[77] Bryna Kra. From combinatorics to ergodic theory and back again , 2006 .
[78] T. Tao,et al. The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.
[79] B. Host. Progressions arithmétiques dans les nombres premiers, d'après B. Green et T. Tao , 2006, math/0609795.
[80] Bryna Kra,et al. Multiple recurrence and convergence for sequences related to the prime numbers , 2006, math/0607637.
[81] N. Frantzikinakis. Multiple ergodic averages for three polynomials and applications , 2006, math/0606567.
[82] Ben Green,et al. Linear equations in primes , 2006, math/0606088.
[83] Bryna Kra,et al. Parallelepipeds, nilpotent groups and Gowers norms , 2006, math/0606004.
[84] A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold , 2006, Ergodic Theory and Dynamical Systems.
[85] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[86] N. Frantzikinakis. Uniformity in the polynomial Wiener–Wintner theorem , 2006, Ergodic Theory and Dynamical Systems.
[87] T. Tao. The dichotomy between structure and randomness, arithmetic progressions, and the primes , 2005, math/0512114.
[88] A. Leibman. Convergence of multiple ergodic averages along polynomials of several variables , 2005 .
[89] Bryna Kra,et al. The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view , 2005 .
[90] M. Wierdl,et al. Sets of k-recurrence but not (k+1)-recurrence , 2005, math/0503367.
[91] T. Tao,et al. An inverse theorem for the Gowers U^3 norm , 2005, math/0503014.
[92] Bryna Kra,et al. Multiple recurrence and nilsequences , 2005 .
[93] A. Leibman. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.
[94] Bryna Kra,et al. Ergodic Averages for Independent Polynomials and Applications , 2004, math/0412177.
[95] Nikos Frantzikinakis,et al. Convergence of multiple ergodic averages for some commuting transformations , 2004, Ergodic Theory and Dynamical Systems.
[96] T. Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2004, Electron. J. Comb..
[97] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[98] N. Frantzikinakis. The structure of strongly stationary systems , 2004, math/0403453.
[99] Bryna Kra,et al. Polynomial averages converge to the product of integrals , 2004, math/0403454.
[100] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[101] I. Assani. Wiener Wintner Ergodic Theorems , 2003 .
[102] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[103] A. Leibman. Polynomial mappings of groups , 2002 .
[104] T. Ziegler. A non-conventional ergodic theorem for a nilsystem , 2002, Ergodic Theory and Dynamical Systems.
[105] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[106] Bryna Kra,et al. Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.
[107] B. Weiss. Single Orbit Dynamics , 1999 .
[108] Andreas Blass,et al. THE DESCRIPTIVE SET THEORY OF POLISH GROUP ACTIONS (LMS Lecture Note Series 232) By Howard Becker and Alexander S. Kechris: 136 pp., £21.95 (LMS Members' price £16.45), ISBN 0 521 57605 9 (Cambridge University Press, 1996). , 1998 .
[109] Shashi M. Srivastava,et al. A Course on Borel Sets , 1998, Graduate texts in mathematics.
[110] A. Leibman. Polynomial Sequences in Groups , 1998 .
[111] D. Rudolph. Fully generic sequences and a multiple-term return-times theorem , 1997 .
[112] N. Shah. Limit distributions of polynomial trajectories on homogeneous spaces , 1994 .
[113] Marina Ratner,et al. Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .
[114] E. Lesigne. Théorèmes ergodiques pour une translation sur un nilvariété , 1989, Ergodic Theory and Dynamical Systems.
[115] M. Wierdl. Pointwise ergodic theorem along the prime numbers , 1988 .
[116] E. Siebert. Weak convergence of measures , 1984 .
[117] D. Ornstein,et al. The ergodic theoretical proof of Szemerédi's theorem , 1982 .
[118] K. Schmidt,et al. Coboundaries and Homomorphisms for Non‐Singular Actions and a Problem of H. Helson , 1980 .
[119] K. Parthasarathy,et al. Introduction to Probability and Measure , 1979 .
[120] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[121] A. Sárközy,et al. On difference sets of sequences of integers. III , 1978 .
[122] D. Mcmahon. Relativized weak disjointness and relatively invariant measures , 1978 .
[123] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[124] Robert J. Zimmer,et al. Ergodic actions with generalized discrete spectrum , 1976 .
[125] R. Zimmer. Extensions of ergodic group actions , 1976 .
[126] R. Zimmer. Extensions of ergodic actions and generalized discrete spectrum , 1975 .
[127] D. Ornstein,et al. On mixing and partial mixing , 1972 .
[128] R. Ellis,et al. A characterization of the equicontinuous structure relation , 1971 .
[129] R. Rigelhof. Induced representations of locally compact groups , 1970 .
[130] William Parry,et al. Dynamical systems on nilmanifolds , 1970 .
[131] W. Parry. Compact abelian group extensions of discrete dynamical systems , 1969 .
[132] W. Veech. The Equicontinuous Structure Relation for Minimal Abelian Transformation Groups , 1968 .
[133] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[134] W. Rudin,et al. Fourier Analysis on Groups. , 1965 .
[135] H. Furstenberg,et al. The Structure of Distal Flows , 1963 .
[136] F. Hahn,et al. On Affine Transformations of Compact Abelian Groups , 1963 .
[137] H. Furstenberg,et al. Strict Ergodicity and Transformation of the Torus , 1961 .
[138] Robert Ellis,et al. Homomorphisms of transformation groups , 1960 .
[139] Robert Ellis,et al. Distal transformation groups. , 1958 .
[140] D. Montgomery,et al. Topological Transformation Groups , 1956 .
[141] W. Gottschalk. Characterizations of almost periodic transformation groups , 1956 .
[142] B. Pettis. On Continuity and Openness of Homomorphisms in Topological Groups , 1950 .
[143] Hidehiko Yamabe. On an arcwise connected subgroup of a Lie group , 1950 .
[144] Kenkichi Iwasawa,et al. On Some Types of Topological Groups , 1949 .
[145] Aurel Wintner,et al. Harmonic Analysis and Ergodic Theory , 1941 .
[146] B. O. Koopman,et al. Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[147] J. G. Corput. Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins , 1931 .
[148] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[149] D. Gaitsgory,et al. A study in derived algebraic geometry Volume II: Deformations, Lie theory and formal geometry , 2018 .
[150] Chengchun Hao. Introduction to Harmonic Analysis , 2016 .
[151] Benjamin Naumann,et al. Classical Descriptive Set Theory , 2016 .
[152] D. M. Clark. Theory of Groups , 2012 .
[153] Colloqu Ium,et al. ASPECTS OF UNIFORMITY IN RECURRENCE , 2011 .
[154] M. Mirzakhani,et al. Introduction to Ergodic theory , 2010 .
[155] E. Akin. Topological Dynamics , 2009, Encyclopedia of Complexity and Systems Science.
[156] A. Maass,et al. Nilsystèmes d’ordre 2 et parallélépipèdes , 2007 .
[157] I. Assani. Averages along cubes for not necessarily commuting , 2006 .
[158] B. Weiss,et al. Piecewise-Bohr Sets of Integers and Combinatorial Number Theory , 2006 .
[159] Bryna Kra,et al. Convergence of polynomial ergodic averages , 2005 .
[160] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[161] Bryna Kra,et al. An odd Furstenberg-Szemerédi theorem and quasi-affine systems , 2002 .
[162] V. Bergelson,et al. Ergodic Ramsey Theory–an Update , 1996 .
[163] F. Greenleaf,et al. Representations of nilpotent Lie groups and their applications , 1989 .
[164] J. Auslander,et al. Minimal flows and their extensions , 1988 .
[165] Robert J. Zimmer,et al. Ergodic Theory and Semisimple Groups , 1984 .
[166] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[167] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[168] W. Parry. Dynamical representations in nilmanifolds , 1973 .
[169] R. T. Moore. Measurable, continuous and smooth vectors for semi-groups and group representations , 1968 .
[170] Karma Dajani. Ergodic Theory , 1963 .
[171] P. Hall,et al. A Contribution to the Theory of Groups of Prime‐Power Order , 1934 .
[172] J. Neumann. Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[173] H. Weyl. Ueber ein Problem aus dem Gebiet der Diophantischen Approximationen , 1914 .