Nilpotent Structures in Ergodic Theory

Nilpotent Structures in Ergodic Theory Bernard Host, Université Paris-Est Marne-la-Vallée, Champssur-Marne, France, and Bryna Kra, Northwestern University, Evanston, IL Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields.

[1]  N. Krylov,et al.  Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations , 2018, Mathematical Surveys and Monographs.

[2]  Stephen D Smith,et al.  Applying the Classification of Finite Simple Groups: A User's Guide , 2018 .

[3]  A. Molev Sugawara Operators for Classical Lie Algebras , 2018 .

[4]  Zhenbo Qin Hilbert Schemes of Points and Infinite Dimensional Lie Algebras , 2018 .

[5]  M. Aguiar,et al.  Topics in Hyperplane Arrangements , 2017 .

[6]  Anh N. Le Nilsequences and multiple correlations along subsequences , 2017, Ergodic Theory and Dynamical Systems.

[7]  Gaven Martin,et al.  An Introduction to the Theory of Higher-dimensional Quasiconformal Mappings , 2017 .

[8]  R. Frigerio Bounded cohomology of discrete groups , 2016, 1610.08339.

[9]  F. Richter,et al.  A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems , 2016, Ergodic Theory and Dynamical Systems.

[10]  S. Donoso,et al.  Pointwise convergence of some multiple ergodic averages , 2016, 1609.02529.

[11]  Yonatan Gutman,et al.  The structure theory of nilspaces I , 2016, Journal d'Analyse Mathématique.

[12]  Andreas Koutsogiannis Closest integer polynomial multiple recurrence along shifted primes , 2015, Ergodic Theory and Dynamical Systems.

[13]  B. Host,et al.  Weighted multiple ergodic averages and correlation sequences , 2015, Ergodic Theory and Dynamical Systems.

[14]  S. Donoso,et al.  Pointwise multiple averages for systems with two commuting transformations , 2015, Ergodic Theory and Dynamical Systems.

[15]  R. Bieri,et al.  On Groups of PL-homeomorphisms of the Real Line , 2014, 1411.2868.

[16]  S. Donoso,et al.  A pointwise cubic average for two commuting transformations , 2014, 1410.4887.

[17]  S. Klainerman,et al.  Shock Formation in Small-Data Solutions to $3D$ Quasilinear Wave Equations: An Overview , 2014, 1407.6320.

[18]  Wen Huang,et al.  Nil Bohr-sets and almost automorphy of higher order , 2014, 1407.1179.

[19]  N. Frantzikinakis Multiple correlation sequences and nilsequences , 2014, Inventiones mathematicae.

[20]  Wen Huang,et al.  Pointwise convergence of multiple ergodic averages and strictly ergodic models , 2014, Journal d'Analyse Mathématique.

[21]  S. Donoso,et al.  Dynamical cubes and a criteria for systems having products extensions , 2014, 1406.1220.

[22]  B. Host,et al.  Higher order Fourier analysis of multiplicative functions and applications , 2014, 1403.0945.

[23]  E. Glasner $RP^{[d]}$ is an equivalence relation: An enveloping semigroup proof , 2014, 1402.3135.

[24]  Tim Austin A Proof of Walsh's Convergence Theorem Using Couplings , 2013, 1310.3219.

[25]  Q. Chu,et al.  Lower bound in the Roth theorem for amenable groups , 2013, Ergodic Theory and Dynamical Systems.

[26]  M. Wierdl,et al.  Random differences in Szemerédi’s theorem and related results , 2013, Journal d'Analyse Mathématique.

[27]  T. Tao,et al.  A multi-dimensional Szemerédi theorem for the primes via a correspondence principle , 2013, Israel Journal of Mathematics.

[28]  X. Ye,et al.  Dynamical Parallelepipeds in Minimal Systems , 2013, Journal of Dynamics and Differential Equations.

[29]  Wenbo Sun Multiple recurrence and convergence for certain averages along shifted primes , 2013, Ergodic Theory and Dynamical Systems.

[30]  Pavel Zorin-Kranich Cube spaces and the multiple term return times theorem , 2012, Ergodic Theory and Dynamical Systems.

[31]  T. Eisner,et al.  Uniformity in the Wiener-Wintner theorem for nilsequences , 2012, 1208.3977.

[32]  A. Leibman Nilsequences, null-sequences, and multiple correlation sequences , 2012, Ergodic Theory and Dynamical Systems.

[33]  A. Maass,et al.  Complexity of nilsystems and systems lacking nilfactors , 2012, 1203.3778.

[34]  N. Frantzikinakis A multidimensional Szemerédi theorem for Hardy sequences of different growth , 2012, 1202.4784.

[35]  Pavel Zorin-Kranich Norm convergence of multiple ergodic averages on amenable groups , 2011, 1111.7292.

[36]  M. N. Walsh Norm convergence of nilpotent ergodic averages , 2011, 1109.2922.

[37]  N. Frantzikinakis,et al.  Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations , 2011, Ergodic Theory and Dynamical Systems.

[38]  Tim Austin Norm convergence of continuous-time polynomial multiple ergodic averages , 2011, Ergodic Theory and Dynamical Systems.

[39]  Terence Tao,et al.  The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic , 2011, 1101.1469.

[40]  Nikos Frantzikinakis,et al.  Random Sequences and Pointwise Convergence of Multiple Ergodic Averages , 2010, 1012.1130.

[41]  Bryna Kra,et al.  A point of view on Gowers uniformity norms , 2010, 1010.0414.

[42]  M. Einsiedler,et al.  Ergodic Theory: with a view towards Number Theory , 2010 .

[43]  M. Bonk,et al.  Expanding Thurston Maps , 2010, 1009.3647.

[44]  Bryna Kra,et al.  The polynomial multidimensional Szemerédi Theorem along shifted primes , 2010, 1009.1484.

[45]  I. Assani Pointwise convergence of ergodic averages along cubes , 2010 .

[46]  X. Ye,et al.  Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence , 2010, 1007.0189.

[47]  Ben Green,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.

[48]  Ben Green,et al.  An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.

[49]  Trevor D. Wooley,et al.  Multiple recurrence and convergence along the primes , 2010, 1001.4081.

[50]  Q. Chu Multiple recurrence for two commuting transformations , 2009, Ergodic Theory and Dynamical Systems.

[51]  B. Host,et al.  Ergodic averages of commuting transformations with distinct degree polynomial iterates , 2009, 0912.2641.

[52]  A. Leibman Orbit of the diagonal in the power of a nilmanifold , 2009 .

[53]  Amanda J. Potts Multiple ergodic averages for flows and an application , 2009, 0910.3687.

[54]  Bryna Kra,et al.  Uniformity seminorms on ℓ∞ and applications , 2009 .

[55]  Terence Tao,et al.  Poincare's Legacies: Pages from Year Two of a Mathematical Blog , 2009 .

[56]  A. Leibman Multiple polynomial correlation sequences and nilsequences , 2009, Ergodic Theory and Dynamical Systems.

[57]  Michael C. R. Johnson Convergence of polynomial ergodic averages of several variables for some commuting transformations , 2009, 0906.3266.

[58]  A. Maass,et al.  Nilsequences and a structure theorem for topological dynamical systems , 2009, Advances in Mathematics.

[59]  Tim Austin Pleasant extensions retaining algebraic structure, I , 2009, 0905.0518.

[60]  N. Frantzikinakis Multiple recurrence and convergence for hardy sequences of polynomial growth , 2009, 0903.0042.

[61]  Q. Chu Convergence of multiple ergodic averages along cubes for several commuting transformations , 2008, 0811.3953.

[62]  B. Host Ergodic seminorms for commuting transformations and applications , 2008, 0811.3703.

[63]  W. T. Gowers,et al.  Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.

[64]  N. Frantzikinakis Equidistribution of sparse sequences on nilmanifolds , 2008, 0810.4661.

[65]  M. Wierdl,et al.  Powers of sequences and convergence of ergodic averages , 2008, Ergodic Theory and Dynamical Systems.

[66]  T. Tao,et al.  The Mobius function is strongly orthogonal to nilsequences , 2008, 0807.1736.

[67]  Tim Austin On the norm convergence of non-conventional ergodic averages , 2008, Ergodic Theory and Dynamical Systems.

[68]  Q. Chu Convergence of weighted polynomial multiple ergodic averages , 2008, 0802.3138.

[69]  M. Wierdl,et al.  A Hardy field extension of Szemerédi's theorem , 2008, 0802.2734.

[70]  T. Tao,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.

[71]  P. Kurlberg,et al.  The Dynamical Mordell-lang Conjecture , 2007, 0712.2344.

[72]  M. Wierdl,et al.  Powers of sequences and recurrence , 2007, 0711.3159.

[73]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[74]  Ben Green,et al.  The quantitative behaviour of polynomial orbits on nilmanifolds , 2007, 0709.3562.

[75]  Terence Tao,et al.  Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.

[76]  A. Leibman Orbits on a nilmanifold under the action of a polynomial sequence of translations , 2007, Ergodic Theory and Dynamical Systems.

[77]  Bryna Kra From combinatorics to ergodic theory and back again , 2006 .

[78]  T. Tao,et al.  The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.

[79]  B. Host Progressions arithmétiques dans les nombres premiers, d'après B. Green et T. Tao , 2006, math/0609795.

[80]  Bryna Kra,et al.  Multiple recurrence and convergence for sequences related to the prime numbers , 2006, math/0607637.

[81]  N. Frantzikinakis Multiple ergodic averages for three polynomials and applications , 2006, math/0606567.

[82]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[83]  Bryna Kra,et al.  Parallelepipeds, nilpotent groups and Gowers norms , 2006, math/0606004.

[84]  A. Leibman Rational sub-nilmanifolds of a compact nilmanifold , 2006, Ergodic Theory and Dynamical Systems.

[85]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[86]  N. Frantzikinakis Uniformity in the polynomial Wiener–Wintner theorem , 2006, Ergodic Theory and Dynamical Systems.

[87]  T. Tao The dichotomy between structure and randomness, arithmetic progressions, and the primes , 2005, math/0512114.

[88]  A. Leibman Convergence of multiple ergodic averages along polynomials of several variables , 2005 .

[89]  Bryna Kra,et al.  The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view , 2005 .

[90]  M. Wierdl,et al.  Sets of k-recurrence but not (k+1)-recurrence , 2005, math/0503367.

[91]  T. Tao,et al.  An inverse theorem for the Gowers U^3 norm , 2005, math/0503014.

[92]  Bryna Kra,et al.  Multiple recurrence and nilsequences , 2005 .

[93]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[94]  Bryna Kra,et al.  Ergodic Averages for Independent Polynomials and Applications , 2004, math/0412177.

[95]  Nikos Frantzikinakis,et al.  Convergence of multiple ergodic averages for some commuting transformations , 2004, Ergodic Theory and Dynamical Systems.

[96]  T. Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2004, Electron. J. Comb..

[97]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[98]  N. Frantzikinakis The structure of strongly stationary systems , 2004, math/0403453.

[99]  Bryna Kra,et al.  Polynomial averages converge to the product of integrals , 2004, math/0403454.

[100]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[101]  I. Assani Wiener Wintner Ergodic Theorems , 2003 .

[102]  Eli Glasner,et al.  Ergodic Theory via Joinings , 2003 .

[103]  A. Leibman Polynomial mappings of groups , 2002 .

[104]  T. Ziegler A non-conventional ergodic theorem for a nilsystem , 2002, Ergodic Theory and Dynamical Systems.

[105]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[106]  Bryna Kra,et al.  Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.

[107]  B. Weiss Single Orbit Dynamics , 1999 .

[108]  Andreas Blass,et al.  THE DESCRIPTIVE SET THEORY OF POLISH GROUP ACTIONS (LMS Lecture Note Series 232) By Howard Becker and Alexander S. Kechris: 136 pp., £21.95 (LMS Members' price £16.45), ISBN 0 521 57605 9 (Cambridge University Press, 1996). , 1998 .

[109]  Shashi M. Srivastava,et al.  A Course on Borel Sets , 1998, Graduate texts in mathematics.

[110]  A. Leibman Polynomial Sequences in Groups , 1998 .

[111]  D. Rudolph Fully generic sequences and a multiple-term return-times theorem , 1997 .

[112]  N. Shah Limit distributions of polynomial trajectories on homogeneous spaces , 1994 .

[113]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[114]  E. Lesigne Théorèmes ergodiques pour une translation sur un nilvariété , 1989, Ergodic Theory and Dynamical Systems.

[115]  M. Wierdl Pointwise ergodic theorem along the prime numbers , 1988 .

[116]  E. Siebert Weak convergence of measures , 1984 .

[117]  D. Ornstein,et al.  The ergodic theoretical proof of Szemerédi's theorem , 1982 .

[118]  K. Schmidt,et al.  Coboundaries and Homomorphisms for Non‐Singular Actions and a Problem of H. Helson , 1980 .

[119]  K. Parthasarathy,et al.  Introduction to Probability and Measure , 1979 .

[120]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[121]  A. Sárközy,et al.  On difference sets of sequences of integers. III , 1978 .

[122]  D. Mcmahon Relativized weak disjointness and relatively invariant measures , 1978 .

[123]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[124]  Robert J. Zimmer,et al.  Ergodic actions with generalized discrete spectrum , 1976 .

[125]  R. Zimmer Extensions of ergodic group actions , 1976 .

[126]  R. Zimmer Extensions of ergodic actions and generalized discrete spectrum , 1975 .

[127]  D. Ornstein,et al.  On mixing and partial mixing , 1972 .

[128]  R. Ellis,et al.  A characterization of the equicontinuous structure relation , 1971 .

[129]  R. Rigelhof Induced representations of locally compact groups , 1970 .

[130]  William Parry,et al.  Dynamical systems on nilmanifolds , 1970 .

[131]  W. Parry Compact abelian group extensions of discrete dynamical systems , 1969 .

[132]  W. Veech The Equicontinuous Structure Relation for Minimal Abelian Transformation Groups , 1968 .

[133]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[134]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[135]  H. Furstenberg,et al.  The Structure of Distal Flows , 1963 .

[136]  F. Hahn,et al.  On Affine Transformations of Compact Abelian Groups , 1963 .

[137]  H. Furstenberg,et al.  Strict Ergodicity and Transformation of the Torus , 1961 .

[138]  Robert Ellis,et al.  Homomorphisms of transformation groups , 1960 .

[139]  Robert Ellis,et al.  Distal transformation groups. , 1958 .

[140]  D. Montgomery,et al.  Topological Transformation Groups , 1956 .

[141]  W. Gottschalk Characterizations of almost periodic transformation groups , 1956 .

[142]  B. Pettis On Continuity and Openness of Homomorphisms in Topological Groups , 1950 .

[143]  Hidehiko Yamabe On an arcwise connected subgroup of a Lie group , 1950 .

[144]  Kenkichi Iwasawa,et al.  On Some Types of Topological Groups , 1949 .

[145]  Aurel Wintner,et al.  Harmonic Analysis and Ergodic Theory , 1941 .

[146]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[147]  J. G. Corput Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins , 1931 .

[148]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[149]  D. Gaitsgory,et al.  A study in derived algebraic geometry Volume II: Deformations, Lie theory and formal geometry , 2018 .

[150]  Chengchun Hao Introduction to Harmonic Analysis , 2016 .

[151]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[152]  D. M. Clark Theory of Groups , 2012 .

[153]  Colloqu Ium,et al.  ASPECTS OF UNIFORMITY IN RECURRENCE , 2011 .

[154]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[155]  E. Akin Topological Dynamics , 2009, Encyclopedia of Complexity and Systems Science.

[156]  A. Maass,et al.  Nilsystèmes d’ordre 2 et parallélépipèdes , 2007 .

[157]  I. Assani Averages along cubes for not necessarily commuting , 2006 .

[158]  B. Weiss,et al.  Piecewise-Bohr Sets of Integers and Combinatorial Number Theory , 2006 .

[159]  Bryna Kra,et al.  Convergence of polynomial ergodic averages , 2005 .

[160]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[161]  Bryna Kra,et al.  An odd Furstenberg-Szemerédi theorem and quasi-affine systems , 2002 .

[162]  V. Bergelson,et al.  Ergodic Ramsey Theory–an Update , 1996 .

[163]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[164]  J. Auslander,et al.  Minimal flows and their extensions , 1988 .

[165]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[166]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[167]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[168]  W. Parry Dynamical representations in nilmanifolds , 1973 .

[169]  R. T. Moore Measurable, continuous and smooth vectors for semi-groups and group representations , 1968 .

[170]  Karma Dajani Ergodic Theory , 1963 .

[171]  P. Hall,et al.  A Contribution to the Theory of Groups of Prime‐Power Order , 1934 .

[172]  J. Neumann Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[173]  H. Weyl Ueber ein Problem aus dem Gebiet der Diophantischen Approximationen , 1914 .