Fixing the stimulus-as-fixed-effect fallacy in task fMRI

Most fMRI experiments record the brain’s responses to samples of stimulus materials (e.g., faces or words). Yet the statistical modeling approaches used in fMRI research universally fail to model stimulus variability in a manner that affords population generalization--meaning that researchers’ conclusions technically apply only to the precise stimuli used in each study, and cannot be generalized to new stimuli. A direct consequence of this stimulus-as-fixed-effect fallacy is that the majority of published fMRI studies have likely overstated the strength of the statistical evidence they report. Here we develop a Bayesian mixed model (the random stimulus model; RSM) that addresses this problem, and apply it to a range of fMRI datasets. Results demonstrate considerable inflation (50 - 200 % in most of the studied datasets) of test statistics obtained from standard “summary statistics”-based approaches relative to the corresponding RSM models. We demonstrate how RSMs can be used to improve parameter estimates, properly control false positive rates, and test novel research hypotheses about stimulus-level variability in human brain responses.

[1]  C. Judd,et al.  Modeling stimulus variation in three common implicit attitude tasks , 2017, Behavior research methods.

[2]  Daniel S. Margulies,et al.  NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain , 2014, bioRxiv.

[3]  Russell A. Poldrack,et al.  OpenfMRI: Open sharing of task fMRI data , 2017, NeuroImage.

[4]  Joshua Carp,et al.  On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments , 2012, Front. Neurosci..

[5]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[6]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[7]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[8]  E. B. Coleman Generalizing to a Language Population , 1964 .

[9]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[10]  H. H. Clark The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. , 1973 .

[11]  D. Perrett,et al.  A differential neural response in the human amygdala to fearful and happy facial expressions , 1996, Nature.

[12]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[13]  Russell A. Poldrack,et al.  Handbook of Functional MRI Data Analysis: Statistical inference on images , 2011 .

[14]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[15]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[16]  D. A. Kenny,et al.  Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli. , 2014, Journal of experimental psychology. General.

[17]  Jessica Cohen,et al.  The development and generality of self -control , 2009 .

[18]  Russell A. Poldrack,et al.  Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses , 2012, NeuroImage.

[19]  Thomas D. Wickens,et al.  On the choice of design and of test statistic in the analysis of experiments with sampled materials , 1983 .

[20]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[21]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[22]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[23]  Sharon L. Thompson-Schill,et al.  Item analysis in functional magnetic resonance imaging , 2007, NeuroImage.

[24]  Thomas V. Wiecki,et al.  Probabilistic Programming in Python using PyMC , 2015, 1507.08050.

[25]  M. Egan,et al.  Serotonin Transporter Genetic Variation and the Response of the Human Amygdala , 2002, Science.

[26]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[27]  D. A. Kenny,et al.  Treating stimuli as a random factor in social psychology: a new and comprehensive solution to a pervasive but largely ignored problem. , 2012, Journal of personality and social psychology.

[28]  J. Raaijmakers,et al.  How to deal with "The language-as-fixed-effect fallacy": Common misconceptions and alternative solutions. , 1999 .

[29]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[30]  Luke J. Chang,et al.  A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect , 2015, PLoS biology.

[31]  S. Rauch,et al.  Response and Habituation of the Human Amygdala during Visual Processing of Facial Expression , 1996, Neuron.

[32]  Matthew D. Lieberman,et al.  An fMRI investigation of race-related amygdala activity in African-American and Caucasian-American individuals , 2005, Nature Neuroscience.

[33]  J. Raaijmakers A further look at the "language-as-fixed-effect fallacy". , 2003, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[34]  J. Kruschke Bayesian estimation supersedes the t test. , 2013, Journal of experimental psychology. General.

[35]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[36]  Jean-Baptiste Poline,et al.  Are fMRI event-related response constant in time? A model selection answer , 2006, NeuroImage.

[37]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[38]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.