A Massively Parallel Implementation of Multilevel Monte Carlo for Finite Element Models

The Multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for Uncertainty Quantification (UQ) in Partial Differential Equation (PDE) models, combining model computations at different levels to create an accurate estimate. Still, the computational complexity of the resulting method is extremely high, particularly for 3D models, which requires advanced algorithms for the efficient exploitation of High Performance Computing (HPC). In this article we present a new implementation of the MLMC in massively parallel computer architectures, exploiting parallelism within and between each level of the hierarchy. The numerical approximation of the PDE is performed using the finite element method but the algorithm is quite general and could be applied to other discretization methods as well, although the focus is on parallel sampling. The two key ingredients of an efficient parallel implementation are a good processor partition scheme together with a good scheduling algorithm to assign work to different processors. We introduce a multiple partition of the set of processors that permits the simultaneous execution of different levels and we develop a dynamic scheduling algorithm to exploit it. The problem of finding the optimal scheduling of distributed tasks in a parallel computer is an NP-complete problem. We propose and analyze a new greedy scheduling algorithm to assign samples and we show that it is a 2-approximation, which is the best that may be expected under general assumptions. On top of this result we design a distributed memory implementation using the Message Passing Interface (MPI) standard. Finally we present a set of numerical experiments illustrating its scalability properties.

[1]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[2]  Jonas Šukys Robust multi-level Monte Carlo finite volume methods for systems of hyperbolic conservation laws with random input data , 2014 .

[3]  Jordi Torres,et al.  PyCOMPSs: Parallel computational workflows in Python , 2016, Int. J. High Perform. Comput. Appl..

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[6]  Santiago Badia,et al.  Distributed-memory parallelization of the aggregated unfitted finite element method , 2019, Computer Methods in Applied Mechanics and Engineering.

[7]  Donald Estep,et al.  Efficient Distribution Estimation and Uncertainty Quantification for Elliptic Problems on Domains with Stochastic Boundaries , 2018, SIAM/ASA J. Uncertain. Quantification.

[8]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[9]  Stefano Marelli,et al.  Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark , 2021, SIAM/ASA J. Uncertain. Quantification.

[10]  C. Reisinger,et al.  Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..

[11]  Michael S. Eldred,et al.  Multilevel parallelism for optimization on MP computers - Theory and experiment , 2000 .

[12]  Rosa M. Badia,et al.  A Parallel Dynamic Asynchronous Framework for Uncertainty Quantification by Hierarchical Monte Carlo Algorithms , 2021, Journal of Scientific Computing.

[13]  edited by Jospeh Y-T. Leung,et al.  Handbook of scheduling , 2013 .

[14]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[15]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[16]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[17]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[18]  Andy J. Keane,et al.  Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains , 2011 .

[19]  Christian Wieners,et al.  The parallel finite element system M++ with integrated multilevel preconditioning and multilevel Monte Carlo methods , 2020, Comput. Math. Appl..

[20]  Jonas Sukys,et al.  Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.

[21]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[22]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[23]  Santiago Badia,et al.  The aggregated unfitted finite element method for elliptic problems , 2017, Computer Methods in Applied Mechanics and Engineering.

[24]  Daniel Elfverson,et al.  A Multilevel Monte Carlo Method for Computing Failure Probabilities , 2014, SIAM/ASA J. Uncertain. Quantification.

[25]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[26]  Paul Diaz,et al.  Sparse polynomial chaos expansions via compressed sensing and D-optimal design , 2017, Computer Methods in Applied Mechanics and Engineering.

[27]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[28]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[29]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[30]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[31]  Robert N. Gantner,et al.  A Generic C++ Library for Multilevel Quasi-Monte Carlo , 2016, PASC.

[32]  J. Sukys Adaptive Load Balancing for Massively Parallel Multi-Level Monte Carlo Solvers , 2013, PPAM.

[33]  A. Kebaier,et al.  Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.

[34]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[35]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[36]  Santiago Badia,et al.  FEMPAR: An Object-Oriented Parallel Finite Element Framework , 2017, Archives of Computational Methods in Engineering.

[37]  Helmut Harbrecht,et al.  Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness , 2017, J. Comput. Phys..

[38]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[39]  Santiago Badia,et al.  Embedded multilevel Monte Carlo for uncertainty quantification in random domains , 2019, International Journal for Uncertainty Quantification.

[40]  Oleg P. Iliev,et al.  Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients , 2019, LSSC.

[41]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[42]  Pénélope Leyland,et al.  A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics , 2017 .

[43]  Peng Chen Sparse Quadrature for High-Dimensional Integration with Gaussian Measure , 2016, 1604.08466.

[44]  Santiago Badia,et al.  A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0 , 2019, Comput. Phys. Commun..

[45]  Kurt Maute,et al.  Topology optimization under uncertainty using a stochastic gradient-based approach , 2019, Structural and Multidisciplinary Optimization.

[46]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[47]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[48]  Helmut Harbrecht,et al.  Numerical Solution of the Poisson Equation on Domains with a Thin Layer of Random Thickness , 2016, SIAM J. Numer. Anal..

[49]  M. S. Eldred,et al.  DESIGN AND IMPLEMENTATION OF MULTILEVEL PARALLEL OPTIMIZATION ON THE INTEL TERAFLOPS , 1998 .

[50]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[51]  Helmut Harbrecht,et al.  First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .