暂无分享,去创建一个
[1] Helmut Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[2] Jonas Šukys. Robust multi-level Monte Carlo finite volume methods for systems of hyperbolic conservation laws with random input data , 2014 .
[3] Jordi Torres,et al. PyCOMPSs: Parallel computational workflows in Python , 2016, Int. J. High Perform. Comput. Appl..
[4] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[5] Daniel M. Tartakovsky,et al. Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..
[6] Santiago Badia,et al. Distributed-memory parallelization of the aggregated unfitted finite element method , 2019, Computer Methods in Applied Mechanics and Engineering.
[7] Donald Estep,et al. Efficient Distribution Estimation and Uncertainty Quantification for Elliptic Problems on Domains with Stochastic Boundaries , 2018, SIAM/ASA J. Uncertain. Quantification.
[8] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[9] Stefano Marelli,et al. Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark , 2021, SIAM/ASA J. Uncertain. Quantification.
[10] C. Reisinger,et al. Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..
[11] Michael S. Eldred,et al. Multilevel parallelism for optimization on MP computers - Theory and experiment , 2000 .
[12] Rosa M. Badia,et al. A Parallel Dynamic Asynchronous Framework for Uncertainty Quantification by Hierarchical Monte Carlo Algorithms , 2021, Journal of Scientific Computing.
[13] edited by Jospeh Y-T. Leung,et al. Handbook of scheduling , 2013 .
[14] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[15] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[16] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[17] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .
[18] Andy J. Keane,et al. Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains , 2011 .
[19] Christian Wieners,et al. The parallel finite element system M++ with integrated multilevel preconditioning and multilevel Monte Carlo methods , 2020, Comput. Math. Appl..
[20] Jonas Sukys,et al. Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.
[21] Ben Adcock,et al. BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.
[22] Benjamin Peherstorfer,et al. Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..
[23] Santiago Badia,et al. The aggregated unfitted finite element method for elliptic problems , 2017, Computer Methods in Applied Mechanics and Engineering.
[24] Daniel Elfverson,et al. A Multilevel Monte Carlo Method for Computing Failure Probabilities , 2014, SIAM/ASA J. Uncertain. Quantification.
[25] Reinhold Schneider,et al. Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.
[26] Paul Diaz,et al. Sparse polynomial chaos expansions via compressed sensing and D-optimal design , 2017, Computer Methods in Applied Mechanics and Engineering.
[27] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[28] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[29] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[30] Michael B. Giles,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[31] Robert N. Gantner,et al. A Generic C++ Library for Multilevel Quasi-Monte Carlo , 2016, PASC.
[32] J. Sukys. Adaptive Load Balancing for Massively Parallel Multi-Level Monte Carlo Solvers , 2013, PPAM.
[33] A. Kebaier,et al. Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.
[34] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[35] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[36] Santiago Badia,et al. FEMPAR: An Object-Oriented Parallel Finite Element Framework , 2017, Archives of Computational Methods in Engineering.
[37] Helmut Harbrecht,et al. Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness , 2017, J. Comput. Phys..
[38] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[39] Santiago Badia,et al. Embedded multilevel Monte Carlo for uncertainty quantification in random domains , 2019, International Journal for Uncertainty Quantification.
[40] Oleg P. Iliev,et al. Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients , 2019, LSSC.
[41] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[42] Pénélope Leyland,et al. A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics , 2017 .
[43] Peng Chen. Sparse Quadrature for High-Dimensional Integration with Gaussian Measure , 2016, 1604.08466.
[44] Santiago Badia,et al. A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0 , 2019, Comput. Phys. Commun..
[45] Kurt Maute,et al. Topology optimization under uncertainty using a stochastic gradient-based approach , 2019, Structural and Multidisciplinary Optimization.
[46] Barbara I. Wohlmuth,et al. Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..
[47] Jonas Sukys,et al. Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..
[48] Helmut Harbrecht,et al. Numerical Solution of the Poisson Equation on Domains with a Thin Layer of Random Thickness , 2016, SIAM J. Numer. Anal..
[49] M. S. Eldred,et al. DESIGN AND IMPLEMENTATION OF MULTILEVEL PARALLEL OPTIMIZATION ON THE INTEL TERAFLOPS , 1998 .
[50] R. Tempone,et al. A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.
[51] Helmut Harbrecht,et al. First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .