Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes

[1]  G. Malucelli,et al.  Sol-gel treatments on cotton fabrics for improving thermal and flame stability: Effect of the structure of the alkoxysilane precursor. , 2012, Carbohydrate polymers.

[2]  J. Alongi,et al.  Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester , 2011 .

[3]  G. Malucelli,et al.  Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes , 2011 .

[4]  G. Malucelli,et al.  Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes , 2011 .

[5]  M. A. Zanjanchi,et al.  Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide , 2011 .

[6]  G. Malucelli,et al.  Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments , 2011 .

[7]  Jenny Alongi,et al.  Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability , 2011 .

[8]  M. A. Zanjanchi,et al.  Titania and titania nanocomposites on cellulosic fibers: Synthesis, characterization and comparative study of photocatalytic activity , 2011 .

[9]  B. Mahltig,et al.  Inorganic/Organic Polymer Coatings for Textiles to Realize Water Repellent and Antimicrobial Properties—A Study with Respect to Textile Comfort , 2010 .

[10]  M. A. Zanjanchi,et al.  The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers , 2010 .

[11]  Claudio Colleoni,et al.  Plasma enhanced CVD of SiOxCyHz, thin film on different textile fabrics: Influence of exposure time on the abrasion resistance and mechanical properties , 2010 .

[12]  Krishan Kumar,et al.  Flame retardant study of cotton coated with intumescents: Kinetics and effect of metal ions , 2009 .

[13]  Q. Wei,et al.  Surface modification of polyester nonwoven fabrics by Al2O3 sol–gel coating , 2009 .

[14]  O. Culha,et al.  Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics , 2007 .

[15]  A. Aziz,et al.  Development of Crack-Free Alumina Sol-gel/Poly(vinyl Alcohol) Membranes for Glucose Oxidase Immobilization , 2007 .

[16]  Lenore L. Dai,et al.  Cotton fabric surface modification for improved UV radiation protection using sol–gel process , 2007 .

[17]  Bernhard Schartel,et al.  Some comments on the main fire retardancy mechanisms in polymer nanocomposites , 2006 .

[18]  A. Alderson,et al.  The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy , 2005 .

[19]  Ning Pan,et al.  Studying the mechanisms of titanium dioxide as ultraviolet‐blocking additive for films and fabrics by an improved scheme , 2004 .

[20]  John H. Xin,et al.  Nucleation and Growth of Anatase Crystallites on Cotton Fabrics at Low Temperatures , 2004 .

[21]  J. Xin,et al.  A New Approach to UV-Blocking Treatment for Cotton Fabrics , 2004 .

[22]  Jixing Xie,et al.  The effect of metal ions on thermal oxidative degradation of cotton cellulose ammonium phosphate , 2004 .

[23]  Wu Yue Preparation and Application of Novel Fabric Finishing Agent Containing Nano ATO , 2002 .

[24]  S. Bourbigot,et al.  Flame retardant formulations for cotton , 2001 .

[25]  G. Camino,et al.  Effect of metal carboxylates on the thermal decomposition of cellulose. , 1998 .

[26]  M. Akalın,et al.  Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air , 1997 .

[27]  Jianzhong Xu,et al.  Study on the thermal degradation of cotton cellulose ammonium phosphate and its metal complexes , 1995 .