Aerostructural Design Exploration of a Wing in Transonic Flow

Multidisciplinary design optimization (MDO) has been previously applied to aerostructural wing design problems with great success. Most previous applications involve fine-tuning a well-designed aircraft wing. In this work, we broaden the scope of the optimization problem by exploring the design space of aerostructural wing design optimization. We start with a rectangular wing and optimize the aerodynamic shape and the sizing of the internal structure to achieve minimum fuel burn on a transonic cruise mission. We use a multi-level optimization procedure to decrease computational cost by 40%. We demonstrate that the optimization can transform the rectangular wing into a swept, tapered wing typical of a transonic aircraft. The optimizer converges to the same wing shape when starting from a different initial design. Additionally, we use a separation constraint at a low-speed, high-lift condition to improve the off-design performance of the optimized wing. The separation constraint results in a substantially different wing design with better low-speed performance and only a slight decrease in cruise performance.

[1]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[2]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[3]  François Gallard,et al.  Aerodynamic aircraft design for mission performance by multipoint optimization , 2013 .

[4]  Joaquim R. R. A. Martins,et al.  Effective adjoint approaches for computational fluid dynamics , 2019, Progress in Aerospace Sciences.

[5]  Joaquim R. R. A. Martins,et al.  Open-source coupled aerostructural optimization using Python , 2018 .

[6]  Thomas A. Reist,et al.  Drag Minimization Based on the Navier–Stokes Equations Using a Newton–Krylov Approach , 2015 .

[7]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[8]  Joaquim R. R. A. Martins,et al.  On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization , 2018 .

[9]  Mark Drela,et al.  Pros & Cons of Airfoil Optimization , 1998 .

[10]  Andy J. Keane,et al.  Efficient Multipoint Aerodynamic Design Optimization Via Cokriging , 2011 .

[11]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[12]  Ilan Kroo,et al.  Subsonic wing planform design using multidisciplinary optimization , 1995 .

[13]  Joaquim R. R. A. Martins,et al.  Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes , 2012, Structural and Multidisciplinary Optimization.

[14]  W SederbergThomas,et al.  Free-form deformation of solid geometric models , 1986 .

[15]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[16]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[17]  Timothy R. Brooks,et al.  High-fidelity aerostructural optimization of tow-steered composite wings , 2019, Journal of Fluids and Structures.

[18]  D. Zingg,et al.  Investigation into Aerodynamic Shape Optimization of Planar and Nonplanar Wings , 2018 .

[19]  David W. Zingg,et al.  Aerostructural Optimization of Drooped Wings , 2017 .

[20]  Joaquim R. R. A. Martins,et al.  Multimodality in Aerodynamic Wing Design Optimization , 2019 .

[21]  Timothy R. Brooks,et al.  Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings , 2018, AIAA Journal.

[22]  Raphael T. Haftka,et al.  Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints , 1977 .

[23]  Joaquim R. R. A. Martins,et al.  Impact of Morphing Trailing Edges on Mission Performance for the Common Research Model , 2019, Journal of Aircraft.

[24]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[25]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[26]  David W. Zingg,et al.  Aerostructural Perspective on Winglets , 2017 .

[27]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[28]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[29]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .

[30]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[31]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[32]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[33]  David Hue,et al.  Contributions to the 6th AIAA CFD Drag Prediction Workshop Using Structured Grid Methods , 2017 .

[34]  Ian R. Chittick,et al.  Aero-structural optimization using adjoint coupled post-optimality sensitivities , 2008 .

[35]  Graeme J. Kennedy,et al.  An evaluation of constraint aggregation strategies for wing box mass minimization , 2017 .

[36]  Ilan Kroo,et al.  Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices , 2010 .

[37]  Beckett Yx Zhou,et al.  Airfoil Optimization Using Practical Aerodynamic Design Requirements , 2010 .

[38]  D. Zingg,et al.  Multimodality and Global Optimization in Aerodynamic Design , 2013 .

[39]  Joaquim R. R. A. Martins,et al.  OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization , 2019, Structural and Multidisciplinary Optimization.

[40]  Joaquim R. R. A. Martins,et al.  A Jacobian-free approximate Newton-Krylov startup strategy for RANS simulations , 2019, J. Comput. Phys..

[41]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[42]  Timothy R. Brooks,et al.  Aerostructural Tradeoffs for Tow-Steered Composite Wings , 2020 .

[43]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[44]  R. M. Hicks,et al.  Single-Point and Multipoint Aerodynamic Shape Optimization of High-Speed Civil Transport , 2001 .

[45]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .