Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

BackgroundIn addition to HLA genetic incompatibility, non-HLA difference between donor and recipients of transplantation leading to allograft rejection are now becoming evident. We aimed to create a unique genome-wide platform to facilitate genomic research studies in transplant-related studies. We designed a genome-wide genotyping tool based on the most recent human genomic reference datasets, and included customization for known and potentially relevant metabolic and pharmacological loci relevant to transplantation.MethodsWe describe here the design and implementation of a customized genome-wide genotyping array, the ‘TxArray’, comprising approximately 782,000 markers with tailored content for deeper capture of variants across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and genotyping quality, we genotyped 85 HapMap samples on the array, including eight trios.ResultsWe show low Mendelian error rates and high concordance rates for HapMap samples (average parent-parent-child heritability of 0.997, and concordance of 0.996). We performed genotype imputation across autosomal regions, masking directly genotyped SNPs to assess imputation accuracy and report an accuracy of >0.962 for directly genotyped SNPs. We demonstrate much higher capture of the natural killer cell immunoglobulin-like receptor (KIR) region versus comparable platforms. Overall, we show that the genotyping quality and coverage of the TxArray is very high when compared to reference samples and to other genome-wide genotyping platforms.ConclusionsWe have designed a comprehensive genome-wide genotyping tool which enables accurate association testing and imputation of ungenotyped SNPs, facilitating powerful and cost-effective large-scale genotyping of transplant-related studies.

Marylyn D. Ritchie | Shefali S. Verma | Kelly A. Birdwell | Daniel G. MacArthur | Weihua Guan | Konrad J. Karczewski | Cisca Wijmenga | Monkol Lek | Malek Kamoun | Folkert W. Asselbergs | Suganthi Balasubramanian | Brendan J. Keating | Hakon Hakonarson | Michael V. Holmes | Pamala A. Jacobson | Matthew B. Lanktree | Vinicius Tragante | Cuiping Hou | Hongzhi Cao | Teresa A. Webster | Pablo Garcia-Pavia | Abdullah M. Al-Rubaish | Yontao Lu | James Garifallou | Daniel McGinn | W. Guan | D. MacArthur | S. Balasubramanian | H. Hakonarson | C. Wijmenga | Baolin Wu | A. Israni | K. Karczewski | P. D. de Bakker | H. Cao | M. Lek | D. Monos | M. Ritchie | J. van Setten | Michael B. Miller | K. Olthoff | F. Asselbergs | M. Holmes | D. Schladt | Y. Li | W. Oetting | M. Lanktree | P. García-Pavía | S. Verma | B. Keating | Yontao Lu | K. Birdwell | C. Hou | A. Shaked | Tiancheng Wang | V. Tragante | M. Kamoun | T. Guettouche | B. Murphy | Hareesh R. Chandrupatla | P. Jacobson | J. Snyder | Paul I W de Bakker | Jessica van Setten | Yun R Li | Daniel E. McGinn | William S. Oetting | Kelly A. Thomas | Barbara Murphy | Baolin Wu | Teresa Webster | A. Al-Ali | James Snyder | Dimitri S. Monos | Yun R. Li | A. Al-Rubaish | F. Al-Muhanna | Toumy Guettouche | Abraham Shaked | Hui Gao | Nikhil Nair | Hareesh Chandrupatla | Baoli Chang | Chanel Wong | Maede Mohebnasab | Eyas Mukhtar | Randy Phillips | Laura Steel | Takesha Lee | Aubree Himes | Jacob van Houten | Andrew Pasquier | Reina Yu | Elena Carrigan | David Schladt | Abdullah Akdere | Ana Gonzalez | Kelsey M. Llyod | Abhinav Gangasani | Zach Michaud | Abigail Colasacco | Kelly Thomas | Tiancheng Wang | Alhusain J. Alzahrani | Amein K. Al-Ali | Fahad A. Al-Muhanna | Samir Al-Mueilo | Kim M. Olthoff | Ajay K. Israni | A. Alzahrani | J. Garifallou | S. Al-Mueilo | Maede Mohebnasab | N. Nair | Hui Gao | B. Chang | Chanel Wong | Randy Phillips | Eyas Mukhtar | L. Steel | Abdullah Akdere | Ana González | Zach Michaud | Abigail Colasacco | Aubree Himes | Elena Carrigan | Vinicius Tragante | D. McGinn | Takesha Lee | Jacob van Houten | Andrew Pasquier | Reina Yu | Abhinav Gangasani | Kelly Thomas | James P Garifallou

[1]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[2]  M. Loriot,et al.  Kidney Transplant Recipients Carrying the CYP3A4*22 Allelic Variant Have Reduced Tacrolimus Clearance and Often Reach Supratherapeutic Tacrolimus Concentrations , 2015, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[3]  B. Schröppel,et al.  Genetic polymorphisms and the fate of the transplanted organ. , 2008, Transplantation reviews.

[4]  J. Chewning,et al.  HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. , 2012, The New England journal of medicine.

[5]  K. Gunderson,et al.  Design of tag SNP whole genome genotyping arrays. , 2009, Methods in molecular biology.

[6]  Pieter B. T. Neerincx,et al.  Supplementary Information Whole-genome sequence variation , population structure and demographic history of the Dutch population , 2022 .

[7]  M. McCarthy,et al.  Genome-wide association studies: potential next steps on a genetic journey. , 2008, Human molecular genetics.

[8]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[9]  B. Schröppel,et al.  Genetic variability and transplantation , 2003, Current opinion in urology.

[10]  A. Rahmel,et al.  The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report--2010. , 2010, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[11]  M. Brown,et al.  Promise and pitfalls of the Immunochip , 2011, Arthritis research & therapy.

[12]  T. Jenssen,et al.  Diagnosis, management and treatment of glucometabolic disorders emerging after kidney transplantation , 2013, Transplant international : official journal of the European Society for Organ Transplantation.

[13]  A. McKnight,et al.  Genetics of new-onset diabetes after transplantation. , 2014, Journal of the American Society of Nephrology : JASN.

[14]  J. R. Scotti,et al.  Available From , 1973 .

[15]  Alexander S. Goldfarb-Rumyantzev,et al.  Genetic prediction of renal transplant outcome , 2008, Current opinion in nephrology and hypertension.

[16]  R. Vaughan,et al.  Natural killer-cell activity after human renal transplantation in relation to killer immunoglobulin-like receptors and human leukocyte antigen mismatch1 , 2003, Transplantation.

[17]  A. Israni,et al.  Genetic Determinants of Mycophenolate-Related Anemia and Leukopenia After Transplantation , 2011, Transplantation.

[18]  M. Rocco,et al.  The APOL1 Gene and Allograft Survival after Kidney Transplantation , 2011, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[19]  S. Mccarroll,et al.  Donor-recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease , 2009, Nature Genetics.

[20]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[21]  Marylyn D. Ritchie,et al.  The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients , 2012, Pharmacogenetics and genomics.

[22]  W. Guan,et al.  Reply to "genetic determinants of mycophenolate-related anemia and leukopenia after transplantation" , 2012 .

[23]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[24]  Sue Povey,et al.  Gene map of the extended human MHC , 2004, Nature Reviews Genetics.

[25]  W. Guan,et al.  Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi‐center cohort , 2011, Transplant international : official journal of the European Society for Organ Transplantation.

[26]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[27]  Simon Cawley,et al.  Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. , 2011, Genomics.

[28]  P. Terasaki,et al.  Deduction of the fraction of immunologic and non-immunologic failure in cadaver donor transplants. , 2003, Clinical transplants.

[29]  M. Sarwal,et al.  Moving beyond HLA: a review of nHLA antibodies in organ transplantation. , 2013, Human immunology.

[30]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[31]  J. Mortensen,et al.  Acute cellular rejection is a risk factor for bronchiolitis obliterans syndrome independent of post-transplant baseline FEV1. , 2009, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[32]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[33]  A. Israni,et al.  Genetic and Clinical Determinants of Early, Acute Calcineurin Inhibitor-Related Nephrotoxicity: Results From a Kidney Transplant Consortium , 2012, Transplantation.

[34]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[35]  Mark I. McCarthy,et al.  Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies , 2008, PloS one.

[36]  Sean Ennis,et al.  A genome‐wide association study of recipient genotype and medium‐term kidney allograft function , 2013, Clinical transplantation.

[37]  A. Israni,et al.  Novel Polymorphisms Associated With Tacrolimus Trough Concentrations: Results From a Multicenter Kidney Transplant Consortium , 2011, Transplantation.

[38]  Pardis C Sabeti,et al.  A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC , 2006, Nature Genetics.

[39]  Tanya M. Teslovich,et al.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits , 2012, PLoS genetics.

[40]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[41]  A. Gratwohl,et al.  H-Y as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study , 2008, The Lancet.

[42]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[43]  J. Barrett,et al.  Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis , 2013, Pharmacogenetics and genomics.

[44]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[45]  B. Kaplan,et al.  Strategies for the management of adverse events associated with mTOR inhibitors. , 2014, Transplantation reviews.

[46]  J. Heimbach,et al.  Interleukin‐28B polymorphisms are associated with histological recurrence and treatment response following liver transplantation in patients with hepatitis C virus infection , 2011, Hepatology.

[47]  M. Desai,et al.  Donor-recipient sex mismatch in kidney transplantation. , 2012, Gender medicine.

[48]  P. Nickerson The impact of immune gene polymorphisms in kidney and liver transplantation. , 2008, Clinics in laboratory medicine.

[49]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.