Equivariant intersection theory

In this paper we develop an equivariant intersection theory for actions of algebraic groups on algebraic schemes. The theory is based on our construction of equivariant Chow groups. They are algebraic analogues of equivariant cohomology groups which satsify the formal properties of ordinary Chow groups. In addition, they enjoy many of the properties of equivariant cohomology. The principal results are: (1) We prove the existence of canonical intersection products on the Chow groups of geometric quotients of smooth varieties- even when the stabilizers of geometric points are non-reduced. (2) We construct a Todd class map from equivariant $K$-theory of coherent sheaves to a completion of equivariant Chow groups, and prove that a completion of equivariant $K$-theory is isomorphic to the completion of equivariant Chow groups. (3) We prove a localization theorem for torus actions and use it to give a characteristic free proof of the Bott residue formula for actions of tori on complete smooth varieties.

[1]  T. Chinburg,et al.  Riemann-Roch type theorems for arithmetic schemes with a finite group action. , 1997 .

[2]  R. Pandharipande The Chow Ring of the Hilbert Scheme of Rational Normal Curves , 1996, alg-geom/9607025.

[3]  R. Pandharipande The Chow Ring of the Non-Linear Grassmannian , 1996, alg-geom/9604022.

[4]  Amnon Yekutieli On adelic Chern forms and the Bott residue formula , 1996 .

[5]  S. Keel,et al.  Quotients by Groupoids , 1995, alg-geom/9508012.

[6]  W. Graham,et al.  Localization in equivariant intersection theory and the Bott residue formula , 1995, alg-geom/9508001.

[7]  J. Kollár Quotient Spaces Modulo Algebraic Groups , 1995, alg-geom/9503007.

[8]  W. Graham,et al.  Characteristic classes in the Chow ring , 1994, alg-geom/9412008.

[9]  W. Graham,et al.  Characteristic classes and quadric bundles , 1994, alg-geom/9412007.

[10]  G. Ellingsrud,et al.  Bott's formula and enumerative geometry , 1994, alg-geom/9411005.

[11]  D. Edidin The codimension-two homology of the moduli space of stable curves is algebraic , 1992 .

[12]  Kimura Shun-ichi Fractional intersection and bivariant theory , 1992 .

[13]  Angelo Vistoli Equivariant Grothendieck groups and equivariant Chow groups , 1992 .

[14]  Angelo Vistoli Intersection theory on algebraic stacks and on their moduli spaces , 1989 .

[15]  G. Ellingsrud,et al.  On the Chow Ring of a Geometric Quotient , 1989 .

[16]  R. Thomason XX. Algebraic K-Theory of Group Scheme Actions , 1988 .

[17]  R. Thomason Lefschetz-Riemann-Roch theorem and coherent trace formula , 1986 .

[18]  R. Thomason Comparison of equivariant algebraic and topological $K$-theory , 1986 .

[19]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[20]  W. Fulton,et al.  Riemann-Roch Algebra , 1985 .

[21]  H. Gillet Intersection theory on algebraic stacks and Q-varieties , 1984 .

[22]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[23]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[24]  H. Gillet Riemann-Roch theorems for higher algebraic K-theory , 1981 .

[25]  H. Gillet Riemann-Roch theorems for higher algebraic $K$-theory , 1980 .

[26]  C. S. Seshadri Geometric reductivity over arbitrary base , 1977 .

[27]  B. Iversen,et al.  Chern Numbers and Diagonalizable Groups , 1975 .

[28]  Hideyasu Sumihiro,et al.  Equivariant completion II , 1975 .

[29]  M. Artin,et al.  Versal deformations and algebraic stacks , 1974 .

[30]  B. Iversen A fixed point formula for action of tori on algebraic varieties , 1972 .

[31]  C. S. Seshadri Quotient Spaces Modulo Reductive Algebraic Groups , 1972 .

[32]  M. Atiyah,et al.  Equivariant $K$-theory and completion , 1969 .

[33]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[34]  M. Atiyah BOTT PERIODICITY AND THE INDEX OF ELLIPTIC OPERATORS , 1968 .

[35]  R. E. Briney Intersection Theory on Quotients of Algebraic Varieties , 1962 .