Static and Dynamic Flexural Strength Anisotropy of Barre Granite

Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

[1]  Yoshiaki Mizuta,et al.  Experimental determination of elastic constants of Oshima granite, Barre granite, and Chelmsford granite , 1992 .

[2]  Xudong Chen,et al.  Quantification of dynamic tensile behavior of cement-based materials , 2014 .

[3]  R. N. Datta,et al.  The controlled failure of rock discs and rings loaded in diametral compression , 1973 .

[4]  R. Nova,et al.  On the Measurement of the Tensile Strength of Soft Rocks , 2005 .

[5]  K. Xia,et al.  Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. , 2008, The Review of scientific instruments.

[6]  T. R. Wilshaw Measurement of Tensile Strength of Ceramics , 1968 .

[7]  F. Rummel,et al.  The controlled failure of rock discs and rings loaded in diametral compression , 1972 .

[8]  K. Xia,et al.  Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus: Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus , 2010 .

[9]  Jian Zhao,et al.  Experimental determination of dynamic tensile properties of a granite , 2000 .

[10]  B. Amadei,et al.  Determination of deformability and tensile strength of anisotropic rock using Brazilian tests , 1998 .

[11]  Ezio Cadoni,et al.  Dynamic Characterization of Orthogneiss Rock Subjected to Intermediate and High Strain Rates in Tension , 2010 .

[12]  A. Vervoort,et al.  Non-local stress approach to fracture initiation in laboratory experiments with a tensile stress gradient , 2001 .

[13]  D. Grady,et al.  Strain-rate dependent fracture initiation , 1980 .

[14]  Arvid M. Johnson,et al.  Crack growth and faulting in cylindrical specimens of chelmsford granite , 1972 .

[15]  A. Kronenberg,et al.  DEFORMATION MICROSTRUCTURES OF BARRE GRANITE: AN OPTICAL, SEM AND TEM STUDY , 1986 .

[16]  Feng Dai,et al.  Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar , 2010 .

[17]  K. Xia,et al.  Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite , 2010 .

[18]  Weinong W Chen,et al.  Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar , 2002 .

[19]  K. Xia,et al.  Rate dependence of the flexural tensile strength of Laurentian granite , 2010 .

[20]  William John Phillips,et al.  An Introduction to Mineralogy for Geologists , 1980 .

[21]  B. Song,et al.  Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops , 2004 .

[22]  B. Mohanty,et al.  Fracture toughness anisotropy in granitic rocks , 2008 .

[23]  M. Nasseri,et al.  Characterization of microstructures and fracture toughness in five granitic rocks , 2005 .

[24]  Julian R. Raxworthy,et al.  Static and dynamic , 2006 .

[25]  E. Z. Lajtai Effect of tensile stress gradient on brittle fracture initiation , 1972 .

[26]  B. Voight,et al.  Anisotropy of Granites: A Reflection of Microscopic Fabric , 1969 .

[27]  K. Xia,et al.  Tensile strength anisotropy of Barre Granite , 2009 .

[28]  Werner Goldsmith,et al.  Static and dynamic fracture strength of Barre granite , 1976 .

[29]  Malcolm Mellor,et al.  MEASUREMENT OF TENSILE STRENGTH BY DIAMETRAL COMPRESSION OF DISCS AND ANNULI , 1971 .

[30]  B. J. Carter Size and stress gradient effects on fracture around cavities , 1992 .

[31]  B. Mohanty,et al.  Effects of microstructures on dynamic compression of Barre granite , 2008 .