Finite Element Analysis Using Nonconforming Mesh

A method for finite element analysis using a regular or structured grid is described that eliminates the need for generating conforming mesh for the geometry. The geometry of the domain is represented using implicit equations, which can be generated from traditional solid models. Solution structures are constructed using implicit equations such that the essential boundary conditions are satisfied exactly. This approach is used to solve boundary value problems arising in thermal and structural analysis. Convergence analysis is performed for several numerical examples and the results are compared with analytical and finite element analysis solutions to show that the method gives solutions that are similar to the finite element method in quality but is often less computationally expensive. Furthermore, by eliminating the need for mesh generation, better integration can be achieved between solid modeling and analysis stages of the design process.

[1]  Elías Cueto,et al.  Numerical integration in Natural Neighbour Galerkin methods , 2004 .

[2]  K. Bathe,et al.  The method of finite spheres , 2000 .

[3]  L. V. Kantorovich,et al.  Näherungsmethoden der höheren Analysis , 1956 .

[4]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[5]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[6]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[7]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[8]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[9]  Igor G. Tsukanov,et al.  Meshfree simulation of deforming domains , 1999, Comput. Aided Des..

[10]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[11]  Ted Belytschko,et al.  Enforcement of essential boundary conditions in meshless approximations using finite elements , 1996 .

[12]  YuanTong Gu,et al.  A local point interpolation method (LPIM) for static and dynamic analysis of thin beams , 2001 .

[13]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[14]  Igor G. Tsukanov,et al.  Transfinite interpolation over implicitly defined sets , 2001, Comput. Aided Geom. Des..

[15]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[16]  Jongho Lee,et al.  Step Function Representation of Solid Models and Application to Mesh Free Engineering Analysis , 2006 .

[17]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[18]  Elías Cueto,et al.  A natural neighbour Galerkin method with quadtree structure , 2005 .

[19]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[20]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[21]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[22]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[23]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[24]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[25]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[26]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[27]  E. Fels Kantorowitsch, L. W., und W. J. Krylow: Näherungsmethoden der höheren Analysis (Hochschulbücher für Mathematik, Band 19). Deutscher Verlag der Wissenschaften, Berlin 1956; XI + 611 S. mit 68 Abb., Gzl. DM 47,— , 1961 .