Carbon nanotube growth by PECVD: a review

Carbon nanotubes (CNTs), due to their unique electronic and extraordinary mechanical properties, have been receiving much attention for a wide variety of applications. Recently, plasma enhanced chemical vapour deposition (PECVD) has emerged as a key growth technique to produce vertically-aligned nanotubes. This paper reviews various plasma sources currently used in CNT growth, catalyst preparation and growth results. Since the technology is in its early stages, there is a general lack of understanding of growth mechanisms, the role of the plasma itself, and the identity of key species responsible for growth. This review is aimed at the low temperature plasma research community that has successfully addressed such issues, through plasma and surface diagnostics and modelling, in semiconductor processing and diamond thin film growth.

[1]  A. Cutler,et al.  CARBON DEPOSITION AND HYDROCARBON FORMATION ON GROUP VIII METAL CATALYSTS , 1998 .

[2]  Uwe R. Kortshagen,et al.  On the E - H mode transition in RF inductive discharges , 1996 .

[3]  G. Park,et al.  Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature , 2000 .

[4]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[5]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[6]  Martha I. Sanchez,et al.  Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns , 2002 .

[7]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[8]  M. Meyyappan,et al.  Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes , 2001 .

[9]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[10]  Bin Chen,et al.  Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth , 2001 .

[11]  R. Hatakeyama,et al.  Experimental study of fullerene-family formation using radio-frequency-discharge reactive plasmas , 2002 .

[12]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[13]  M. Okai,et al.  Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition , 2000 .

[14]  G. Tibbetts Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes , 1983 .

[15]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[16]  Michael L. Simpson,et al.  Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition , 2001 .

[17]  Ian McNulty,et al.  Quantitative nanoscale metrology study of Cu/SiO2 interconnect technology using transmission x-ray microscopy , 2000 .

[18]  D. J. Johnson,et al.  Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates , 1998 .

[19]  Chong-Yun Park,et al.  Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition , 2000 .

[20]  R. J. Waite,et al.  Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene , 1972 .

[21]  Lance Delzeit,et al.  Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers. , 2002, Journal of nanoscience and nanotechnology.

[22]  Charles M. Lieber,et al.  DIRECT GROWTH OF SINGLE-WALLED CARBON NANOTUBE SCANNING PROBE MICROSCOPY TIPS , 1999 .

[23]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[24]  L. Schlapbach,et al.  Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma , 1998 .

[25]  R. J. Waite,et al.  Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene , 1973 .

[26]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[27]  G. Amaratunga,et al.  Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy , 2002 .

[28]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[29]  L. Delzeit,et al.  Electronic properties of multiwalled carbon nanotubes in an embedded vertical array , 2002 .

[30]  Elizabeth C. Dickey,et al.  Model of carbon nanotube growth through chemical vapor deposition , 1999 .

[31]  M. Meyyappan,et al.  Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor , 2002 .

[32]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[33]  M. Meyyappan,et al.  Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors , 2001 .

[34]  S. Yu,et al.  Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition , 2002 .

[35]  M. Meyyappan,et al.  Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy , 2002 .

[36]  A. Ding,et al.  Formation mechanism of single-wall carbon nanotubes on liquid-metal particles , 1999 .

[37]  Yayi Wei,et al.  Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition , 2001 .

[38]  Carbon nanotubes with single-layer walls , 1995 .

[39]  Kenneth A. Smith,et al.  Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .

[40]  Pavel Nikolaev,et al.  Diameter doubling of single-wall nanotubes , 1997 .

[41]  Seong Chu Lim,et al.  Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 2000 .

[42]  Bin Chen,et al.  Multiwalled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts , 2002 .

[43]  Amy E. Wendt,et al.  High-density plasma sources , 2000 .

[44]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[45]  Chia-Fu Chen,et al.  Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition , 2002 .

[46]  W. C. Tjiu,et al.  Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition , 2001 .

[47]  Zhong Lin Wang,et al.  Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition , 1997 .

[48]  M. Meyyappan,et al.  Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization , 2002 .

[49]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[50]  M. L. Simpson,et al.  Shaping carbon nanostructures by controlling the synthesis process , 2001 .

[51]  Soon Fatt Yoon,et al.  Carbon films with high density nanotubes produced using microwave plasma assisted CVD , 2000 .

[52]  D. Hash,et al.  Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes , 2003 .

[53]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[54]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[55]  R. Hatakeyama,et al.  Production of carbon nanotubes by controlling radio-frequency glow discharge with reactive gases , 2002 .

[56]  D. Gruen,et al.  Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 1998 .

[57]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[58]  M. Tanemura,et al.  Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters , 2001 .

[59]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[60]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[61]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[62]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .