On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

[1]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[2]  Carol S. Woodward,et al.  Preconditioning Strategies for Fully Implicit Radiation Diffusion with Material-Energy Transfer , 2001, SIAM J. Sci. Comput..

[3]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[4]  Robert B. Lowrie,et al.  A comparison of implicit time integration methods for nonlinear relaxation and diffusion , 2004 .

[5]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[6]  L. H. Howell,et al.  Radiation diffusion for multi-fluid Eulerian hydrodynamics with adaptive mesh refinement , 2003 .

[7]  William J. Rider,et al.  Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion , 2001 .

[8]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[9]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[10]  Michael Pernice,et al.  Solution of Equilibrium Radiation Diffusion Problems Using Implicit Adaptive Mesh Refinement , 2005, SIAM J. Sci. Comput..

[11]  William J. Rider,et al.  An efficient nonlinear solution method for non-equilibrium radiation diffusion , 1999 .

[12]  Hengbin An,et al.  On Convergence of the Additive Schwarz Preconditioned Inexact Newton Method , 2005, SIAM J. Numer. Anal..

[13]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[14]  R. Sani,et al.  On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions , 1980 .

[15]  Carol S. Woodward,et al.  Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration , 2005 .

[16]  Gabriel Wittum,et al.  Parallel adaptive multigrid algorithm for 2-d 3-t diffusion equations , 2004, Int. J. Comput. Math..

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  J. Miller Numerical Analysis , 1966, Nature.

[19]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[20]  J. Shadid,et al.  Studies on the accuracy of time-integration methods for the radiation-diffusion equations , 2004 .

[21]  Yuri V. Vassilevski,et al.  Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations , 2006, J. Comput. Phys..

[22]  Z. Bai,et al.  A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .

[23]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[24]  Carol S. Woodward,et al.  User Documentation for KINSOL v2.2.0 , 2004 .

[25]  Stefania Bellavia,et al.  A Globally Convergent Newton-GMRES Subspace Method for Systems of Nonlinear Equations , 2001, SIAM J. Sci. Comput..

[26]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[27]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[28]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[29]  Robert D. Falgout,et al.  Iterative Linear Solvers in a 2D Radiation-Hydrodynamics Code , 1999 .