Prediccion de la calidad superficial antes del proceso de maquinado, en fresado a alta velocidad, utilizando maquinas de soporte vectorial

[1]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[2]  Siwaporn Kunnapapdeelert,et al.  Optimal cutting condition determination for desired surface roughness in end milling , 2009 .

[3]  Gui Xia Zheng,et al.  Prediction of Surface Roughness Profiles for Milling Process with Fractal Parameters Based on LS-SVM , 2010 .

[4]  Abhisek Ukil,et al.  Support Vector Machine , 2007 .

[5]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[6]  Sami Ekici,et al.  Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel , 2012, J. Intell. Manuf..

[7]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[8]  Rui Zhang,et al.  Comparing the use of bayesian networks and neural networks in response time modeling for service-oriented systems , 2007, SOCP '07.

[9]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[10]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[11]  Robert Biernacki,et al.  Modeling of manufacturing processes by learning systems: The naïve Bayesian classifier versus artificial neural networks , 2005 .

[12]  Zhuoda Jiang Intelligent prediction of surface roughness of milling aluminium alloy based on least square support vector machine , 2010, 2010 Chinese Control and Decision Conference.

[13]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[14]  John A. Marchant,et al.  Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination , 2003 .

[15]  Oğuz Çolak,et al.  Milling surface roughness prediction using evolutionary programming methods , 2007 .