Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

Summary An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented.

[1]  J. P. Sargent,et al.  A practical approach to the development of a synthetic Gecko tape , 2009 .

[2]  Metin Sitti,et al.  Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. , 2009, ACS applied materials & interfaces.

[3]  Rhokyun Kwak,et al.  Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography. , 2008, Small.

[4]  Mark R. Cutkosky,et al.  Directional adhesion for climbing: theoretical and practical considerations , 2007 .

[5]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[6]  Eduard Arzt,et al.  Hierarchical Gecko‐Like Adhesives , 2009 .

[7]  Kimberly L. Turner,et al.  A Gecko‐Inspired Reversible Adhesive , 2008 .

[8]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.

[9]  S. Moon,et al.  Angular distribution of particles sputtered from Si bottom in a CHF3 plasma , 2006 .

[10]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[11]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Darren J. Martin,et al.  THE BIOCOMPATIBILITY OF CARBON NANOTUBES , 2006 .

[13]  Robert Langer,et al.  A biodegradable and biocompatible gecko-inspired tissue adhesive , 2008, Proceedings of the National Academy of Sciences.

[14]  Eduard Arzt,et al.  Contact shape controls adhesion of bioinspired fibrillar surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Eduard Arzt,et al.  Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices , 2007 .

[17]  Alfred J. Crosby,et al.  Surface Wrinkles for Smart Adhesion , 2008 .

[18]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.

[19]  Liangti Qu,et al.  Gecko‐Foot‐Mimetic Aligned Single‐Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties , 2007 .

[20]  Shravanthi T. Reddy,et al.  Bioinspired Surfaces with Switchable Adhesion , 2007 .

[21]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[22]  Victor Samper,et al.  Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template , 2007 .

[23]  Mark R. Cutkosky,et al.  Smooth Vertical Surface Climbing With Directional Adhesion , 2008, IEEE Transactions on Robotics.

[24]  Y. Nakayama,et al.  Geckolike high shear strength by carbon nanotube fiber adhesives , 2009 .

[25]  Bharat Bhushan,et al.  Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion' , 2006 .

[26]  John Robertson,et al.  Surface properties of vertically aligned carbon nanotube arrays , 2008 .

[27]  J. James,et al.  A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks , 2006, Critical reviews in toxicology.

[28]  Chung-Yuen Hui,et al.  Constraints on Microcontact Printing Imposed by Stamp Deformation , 2002 .

[29]  Hyun Jung Lee,et al.  Rigiflex Lithography for Nanostructure Transfer , 2005 .

[30]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[31]  Kahp Y. Suh,et al.  Stretched polymer nanohairs by nanodrawing. , 2006 .

[32]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[33]  M. Sitti,et al.  Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives , 2007, IEEE/ASME Transactions on Mechatronics.

[34]  M. Sitti,et al.  Gecko-inspired directional and controllable adhesion. , 2008, Small.

[35]  Nicola M. Pugno,et al.  Observation of optimal gecko's adhesion on nanorough surfaces , 2008, Biosyst..

[36]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[37]  Wonkyu Moon,et al.  Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold , 2007 .

[38]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[39]  Kahp Y. Suh,et al.  Stooped Nanohairs: Geometry‐Controllable, Unidirectional, Reversible, and Robust Gecko‐like Dry Adhesive , 2009 .

[40]  Se-Jin Choi,et al.  Unconventional Patterning with A Modulus-Tunable Mold: From Imprinting to Microcontact Printing , 2004 .

[41]  Eduard Arzt,et al.  Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[42]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[43]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[44]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[45]  Chang-Koo Kim,et al.  Deep etching of silicon with smooth sidewalls by an improved gas-chopping process using a Faraday cage and a high bias voltage , 2005 .

[46]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[47]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[48]  Huajian Gao,et al.  Effects of contact shape on the scaling of biological attachments , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[50]  Se-Jin Choi,et al.  An ultraviolet-curable mold for sub-100-nm lithography. , 2004, Journal of the American Chemical Society.

[51]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[52]  C Majidi,et al.  Effective elastic modulus of isolated gecko setal arrays , 2006, Journal of Experimental Biology.

[53]  R S Fearing,et al.  High friction from a stiff polymer using microfiber arrays. , 2006, Physical review letters.

[54]  Kahp Y. Suh,et al.  High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force , 2008 .