Parametrizations for triangular Gk spline surfaces of low degree
暂无分享,去创建一个
[1] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[2] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[3] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[5] Jörg M. Hahn. Geometric continuous patch complexes , 1989, Comput. Aided Geom. Des..
[6] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[7] Ruibin Qu. Recursive subdivision algorithms for curve and surface design (subdivision algorithms) , 1990 .
[8] C. D. Boor,et al. Box splines , 1993 .
[9] U. Reif. A degree estimate for subdivision surfaces of higher regularity , 1996 .
[10] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[11] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[12] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[13] J. Clark,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[14] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[15] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..
[16] H. Prautzsch,et al. Triangular G2-Splines , 2000 .
[17] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[18] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[19] Hartmut Prautzsch,et al. Box Splines , 2002, Handbook of Computer Aided Geometric Design.
[20] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[21] Jörg Peters,et al. C2 free-form surfaces of degree (3, 5) , 2002, Comput. Aided Geom. Des..
[22] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[23] Jörg Peters,et al. Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..
[24] Jörg Peters,et al. Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..
[25] G. Umlauf. A Technique for Verifying the Smoothness of Subdivision Schemes , 2022 .