Tverberg’s theorem is 50 years old: A survey
暂无分享,去创建一个
[1] Helge Tverberg. A combinatorial mathematician in Norway: some personal reflections , 2001, Discret. Math..
[2] Noga Alon,et al. Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.
[3] V. Dol'nikov,et al. A certain combinatorial inequality , 1988 .
[4] János Pach. A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..
[5] Sinisa T. Vrecica,et al. The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory A.
[6] Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth , 2004, SODA '04.
[7] Pablo Soberón. Equal coefficients and tolerance in coloured tverberg partitions , 2013, SoCG '13.
[8] Jesús A. De Loera,et al. Quantitative Combinatorial Geometry for Continuous Parameters , 2016, Discret. Comput. Geom..
[9] Attila Pór,et al. An Improvement on the Rado Bound for the Centerline Depth , 2016, Discret. Comput. Geom..
[10] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[11] Herbert E. Scarf. An observation on the structure of production sets with indivisibilities , 1977 .
[12] Florian Frick,et al. Intersection patterns of finite sets and of convex sets , 2016, 1607.01003.
[13] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[14] Leonardo Martínez-Sandoval,et al. Complete Kneser Transversals , 2015, Adv. Appl. Math..
[15] Jean-Pierre Roudneff,et al. Partitions of Points into Simplices withk-dimensional Intersection. Part I: The Conic Tverberg's Theorem , 2001, Eur. J. Comb..
[16] Wolfgang Mulzer,et al. Algorithms for Tolerant Tverberg Partitions , 2014, Int. J. Comput. Geom. Appl..
[17] B. J. Birch,et al. On 3N points in a plane , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] R. Živaljević,et al. The Tverberg-Vrećica problem and the combinatorial geometry on vector bundles , 1999 .
[19] Imre Bárány,et al. On a Topological Generalization of a Theorem of Tverberg , 1981 .
[20] Ulrich Wagner,et al. On k-sets and applications , 2003 .
[21] Miklós Simonovits,et al. Supersaturated graphs and hypergraphs , 1983, Comb..
[22] Shmuel Onn,et al. On the Geometry and Computational Complexity of Radon Partitions in the Integer Lattice , 1991, SIAM J. Discret. Math..
[23] David E. Bell. A Theorem Concerning the Integer Lattice , 1977 .
[24] An elementary proof of Tverberg’s theorem , 2009 .
[25] Jürgen Eckhoff,et al. Radon’s theorem revisited , 1979 .
[26] Jean-Paul Doignon,et al. Convexity in cristallographical lattices , 1973 .
[27] Gary L. Miller,et al. Approximate centerpoints with proofs , 2010, Comput. Geom..
[28] Jean-Pierre Roudneff,et al. Partitions of Points into Simplices withk-dimensional Intersection. Part II: Proof of Reay's Conjecture in Dimensions 4 and 5 , 2001, Eur. J. Comb..
[29] Rade T. Zivaljevic,et al. Note on a conjecture of sierksma , 1993, Discret. Comput. Geom..
[30] I. Bárány,et al. A Colored Version of Tverberg's Theorem , 1992 .
[31] Stephan Hell. On the Number of Colored Birch and Tverberg Partitions , 2014, Electron. J. Comb..
[32] Roman N. Karasev. Tverberg's Transversal Conjecture and Analogues of Nonembeddability Theorems for Transversals , 2007, Discret. Comput. Geom..
[33] Karanbir S. Sarkaria,et al. A generalized kneser conjecture , 1990, J. Comb. Theory, Ser. B.
[34] Florian Frick,et al. On Reay's Relaxed Tverberg Conjecture and Generalizations of Conway's Thrackle Conjecture , 2016, Electron. J. Comb..
[35] E. R. Kampen. Komplexe in euklidischen Räumen , 1933 .
[36] Miguel Raggi,et al. A Note on the Tolerant Tverberg Theorem , 2017, Discret. Comput. Geom..
[37] Z. Füredi,et al. The number of triangles covering the center of an n-set , 1984 .
[38] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[39] Ruy Fabila Monroy,et al. Very Colorful Theorems , 2009, Discret. Comput. Geom..
[40] V. Dol'nikov,et al. A generalization of the ham sandwich theorem , 1992 .
[41] Stephan Hell,et al. Tverberg's theorem with constraints , 2007, J. Comb. Theory, Ser. A.
[42] Imre Bárány,et al. Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..
[43] Florian Frick,et al. Tverberg plus constraints , 2014, 1401.0690.
[44] Mia Hubert,et al. Depth in an Arrangement of Hyperplanes , 1999, Discret. Comput. Geom..
[45] P. Soberón,et al. Positive-fraction intersection results and variations of weak epsilon-nets , 2015, 1506.02191.
[46] Pavle V. M. Blagojevic,et al. Tverberg-Type Theorems for Matroids: A Counterexample and a Proof , 2017, Combinatorica.
[47] Jürgen Eckhoff,et al. The partition conjecture , 2000, Discrete Mathematics.
[48] Florian Frick,et al. Barycenters of polytope skeleta and counterexamples to the Topological Tverberg Conjecture, via constraints , 2015, Journal of the European Mathematical Society.
[49] Stéphane Gaubert,et al. Carathéodory, Helly and the Others in the Max-Plus World , 2010, Discret. Comput. Geom..
[50] Bernt Lindström. A Theorem on Families of Sets , 1972, J. Comb. Theory, Ser. A.
[51] Roman N. Karasev,et al. Tverberg-Type Theorems for Intersecting by Rays , 2010, Discret. Comput. Geom..
[52] Jesús A. De Loera,et al. Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets , 2016, Discret. Comput. Geom..
[53] Robert E. Jamison-Waldner. PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .
[54] Imre Bárány,et al. Tverberg Plus Minus , 2018, Discret. Comput. Geom..
[55] Jiří Matoušek,et al. On the chromatic number of Kneser hypergraphs , 2002 .
[56] Florian Frick,et al. Chromatic Numbers of Stable Kneser Hypergraphs via Topological Tverberg-Type Theorems , 2017, International Mathematics Research Notices.
[57] A. Volovikov,et al. On a topological generalization of the Tverberg theorem , 1996 .
[58] E. D. Giorgi. Selected Papers , 2006 .
[59] Jorge L. Ramírez Alfonsín. Lawrence Oriented Matroids and a Problem of McMullen on Projective Equivalences of Polytopes , 2001, Eur. J. Comb..
[60] Attila Por. Universality of vector sequences and universality of Tverberg partitions , 2018 .
[61] Pavle V. M. Blagojevi'c,et al. Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.
[62] G. Kalai,et al. A Tverberg type theorem for matroids , 2016, 1607.01599.
[63] Роман Николаевич Карасeв,et al. Двойственные теоремы о центральной точке и их обобщения@@@Dual theorems on central points and their generalizations , 2008 .
[64] Roman Karasev,et al. Dual theorems on central points and their generalizations , 2008 .
[65] Murad Ozaydin,et al. Equivariant Maps for the Symmetric Group , 1987 .
[66] Jirí Matousek,et al. Stabbing Simplices by Points and Flats , 2008, Discret. Comput. Geom..
[67] Sinisa T. Vrecica. Tverberg's Conjecture , 2003, Discret. Comput. Geom..
[68] Jean-Pierre Roudneff. New cases of Reay's conjecture on partitions of points into simplices with k-dimensional intersection , 2009, Eur. J. Comb..
[69] Aart Blokhuis,et al. The Radon Number of the Three-Dimensional Integer Lattice , 2003, Discret. Comput. Geom..
[70] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[71] L. Lovász,et al. Orthogonal representations and connectivity of graphs , 1989 .
[72] Imre Bárány,et al. Tverberg’s Theorem at 50: Extensions and Counterexamples , 2016 .
[73] Imre Bárány. Helge Tverberg is eighty: A personal tribute , 2017, Eur. J. Comb..
[74] Helge Tverberg,et al. On Generalizations of Radon's Theorem and the Ham Sandwich Theorem , 1993, Eur. J. Comb..
[75] K. S. Sarkaria. A generalized van Kampen-Flores theorem , 1991 .
[76] Uli Wagner,et al. Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.
[77] Boris Bukh. Radon partitions in convexity spaces , 2010, ArXiv.
[78] David Avis. The m-core properly contains the m-divisible points in space , 1993, Pattern Recognit. Lett..
[79] Benjamin Matschke,et al. Optimal bounds for a colorful Tverberg--Vrecica type problem , 2009, 0911.2692.
[80] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[81] Gabriel Nivasch,et al. Classifying unavoidable Tverberg partitions , 2016, Journal of Computational Geometry.
[82] Roman N. Karasev,et al. A Simpler Proof of the Boros–Füredi–Bárány–Pach–Gromov Theorem , 2010, Discret. Comput. Geom..
[83] Helge Tverberg. A generalization of Radon's theorem II , 1981, Bulletin of the Australian Mathematical Society.
[84] Steven Simon. Average-value tverberg partitions via finite fourier analysis , 2015 .
[85] Pablo Soberón. Robust Tverberg and Colourful Carathéodory Results via Random Choice , 2018, Comb. Probab. Comput..
[86] On Tverberg partitions , 2015, 1508.07262.
[87] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[88] Pavle V. M. Blagojevi'c,et al. Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story , 2016, 1605.07321.
[89] Heather A. Harrington,et al. Algebraic and Geometric Methods in Discrete Mathematics , 2017 .
[90] Jirí Matousek,et al. Lower bounds for weak epsilon-nets and stair-convexity , 2008, SCG '09.
[91] A. Dold,et al. Simple proofs of some Borsuk - Ulam results , 1983 .
[92] H. Whitney. The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .
[93] I. Bárány,et al. On a common generalization of Borsuk's and Radon's theorem , 1979 .
[94] Gabriel Nivasch,et al. One-sided epsilon-approximants , 2016, ArXiv.
[95] Xavier Goaoc,et al. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg , 2017, Bulletin of the American Mathematical Society.
[96] Uli Wagner,et al. Eliminating Higher-Multiplicity Intersections, III. Codimension 2 , 2015, Israel Journal of Mathematics.
[97] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[98] Stephan Hell. On the number of Tverberg partitions in the prime power case , 2007, Eur. J. Comb..
[99] Stephan Hell. On the Number of Birch Partitions , 2008, Discret. Comput. Geom..
[100] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .
[101] Pablo Soberón. Equal coefficients and tolerance in coloured Tverberg partitions , 2015, Comb..
[102] Paul Kirchberger,et al. Über Tchebychefsche Annäherungsmethoden , 1903 .
[103] J. R. Reay. Several generalizations of Tverberg’s theorem , 1979 .
[104] Gil Kalai,et al. A topological colorful Helly theorem , 2005 .
[105] David Forge,et al. 10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a Convex Polytope , 2001, Eur. J. Comb..
[106] R. Živaljević,et al. An Extension of the Ham Sandwich Theorem , 1990 .
[107] G. Kalai. Combinatorics with a Geometric Flavor , 2000 .
[108] N. Alon,et al. Piercing convex sets and the hadwiger-debrunner (p , 1992 .
[109] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[110] Micha A. Perles,et al. Some variations on Tverberg’s theorem , 2016 .
[111] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[112] K. S. Sarkaria. Tverberg’s theorem via number fields , 1992 .
[113] Zoltán Füredi,et al. On the number of halving planes , 1989, SCG '89.
[114] I. Kríz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .
[115] P. Soberón. Helly‐type theorems for the diameter , 2015, 1509.07908.
[116] D. G. Larman. On Sets Projectively Equivalent to the Vertices of a Convex Polytope , 1972 .
[117] P. Soberón. Tverberg partitions as epsilon-nets , 2017 .
[118] David Rolnick,et al. Quantitative (p, q) theorems in combinatorial geometry , 2017, Discret. Math..
[119] John R. Reay. An extension of Radon's theorem , 1968 .
[120] Andreas F. Holmsen. The intersection of a matroid and an oriented matroid , 2016 .
[121] M. Gromov. Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .
[122] Pablo Soberón,et al. A Generalisation of Tverberg’s Theorem , 2012, Discret. Comput. Geom..
[123] Pavle V. M. Blagojevi'c,et al. The Topological Transversal Tverberg Theorem Plus Constraints , 2016, 1604.02814.
[124] Jorge L. Ramírez Alfonsín,et al. TRANSVERSALS TO THE CONVEX HULLS OF ALL k -SETS OF DISCRETE SUBSETS OF R n , 2013 .