Wavelet Galerkin BEM on unstructured meshes

AbstactThe present paper is devoted to the fast solution of boundary integral equations on unstructured meshes by the Galerkin scheme. On the given mesh we construct a wavelet basis providing vanishing moments with respect to the traces of polynomials in the space. With this basis at hand, the system matrix in wavelet coordinates can be compressed to O(Nlog N) relevant matrix coefficients, where N denotes the number of unknowns. The compressed system matrix can be computed within suboptimal complexity by using techniques from the fast multipole method or panel clustering. Numerical results prove that we succeeded in developing a fast wavelet Galerkin scheme for solving the considered class of problems.

[1]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[2]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[3]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[4]  Jacob K. White,et al.  Multiscale Bases for the Sparse Representation of Boundary Integral Operators on Complex Geometry , 2002, SIAM J. Sci. Comput..

[5]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .

[6]  P. Oswald,et al.  Multilevel norms forH−1/2 , 1998, Computing.

[7]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[8]  W. L. Wendland,et al.  On Asymptotic Error Analysis and Mathematical Principles for Boundary Element Methods , 1984 .

[9]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[10]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[11]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[12]  Christoph Schwab,et al.  Wavelet Galerkin BEM on Unstructured Meshes by Aggregation , 2002 .

[13]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[14]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[15]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[16]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[17]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[18]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[19]  Christoph Schwab Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.