暂无分享,去创建一个
Martin Rötteler | Krysta Marie Svore | Shawn X. Cui | Alex Bocharov | M. Rötteler | K. Svore | A. Bocharov
[1] Mark Howard,et al. Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.
[2] Mozammel H. A. Khan,et al. Quantum ternary parallel adder/subtractor with partially-look-ahead carry , 2007, J. Syst. Archit..
[3] Martin Rötteler,et al. Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures , 2016, ArXiv.
[4] Thomas G. Draper,et al. A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..
[5] Thomas G. Draper,et al. A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.
[6] M. Mosca,et al. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[7] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[8] Daniel Gottesman. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.
[9] Shawn X. Cui,et al. Universal quantum computation with metaplectic anyons , 2014, 1405.7778.
[10] Dianne P. O'Leary,et al. Efficient circuits for exact-universal computationwith qudits , 2006, Quantum Inf. Comput..
[11] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[12] Colin P. Williams. Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.
[13] Dmitri Maslov,et al. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[14] Geoffrey Mason,et al. The Santa Cruz Conference on Finite Groups , 1981 .
[15] Jr.,et al. Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.
[16] Martin Rötteler,et al. Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .
[17] Cheryl E. Praeger,et al. On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[18] P. Oscar Boykin,et al. A new universal and fault-tolerant quantum basis , 2000, Inf. Process. Lett..
[19] Physical Review , 1965, Nature.
[20] A. Harrow,et al. J ul 2 00 2 Efficient Discrete Approximations of Quantum Gates , 2002 .
[21] B. Recht,et al. Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.
[22] M. Morisue,et al. A novel ternary logic circuit using Josephson junction , 1989 .
[23] D. Browne,et al. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.
[24] Mititada Morisue,et al. A Josephson ternary memory circuit , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).
[25] Poland ÃLódź,et al. International Journal of Foundations of Computer Science c ○ World Scientific Publishing Company EFFICIENT ALGORITHMS FOR (δ, γ, α) AND , 2008 .
[26] D. M. Miller,et al. A Synthesis Method for MVL Reversible Logic , 2004 .
[27] A. Zeilinger,et al. Multi-photon entanglement in high dimensions , 2015, Nature Photonics.