DIAGONAL SOLUTIONS TO REFLECTION EQUATIONS IN HIGHER SPIN MODELS

[1]  M. Jimbo,et al.  XXZ chain with a boundary , 1994, hep-th/9411112.

[2]  L. Hlavatý Generalized algebraic framework for open spin chains , 1994 .

[3]  H. Vega,et al.  Exact solution of the SUq (n)-invariant quantum spin chains , 1993, hep-th/9309022.

[4]  H. Vega,et al.  Boundary K-matrices for the XYZ, XXZ and XXX spin chains , 1993, hep-th/9306089.

[5]  M. Jimbo,et al.  Diagonalization of theXXZ Hamiltonian by vertex operators , 1992, hep-th/9204064.

[6]  P. Kulish,et al.  Algebraic structures related to reflection equations , 1992, hep-th/9209054.

[7]  H. Vega,et al.  New integrable quantum chains combining different kinds of spins , 1992 .

[8]  C. Schwiebert,et al.  Constant solutions of reflection equations and quantum groups , 1992, hep-th/9205039.

[9]  Rafael I. Nepomechie,et al.  Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms , 1990 .

[10]  V. Pasquier,et al.  Common structures between finite systems and conformal field theories through quantum groups , 1990 .

[11]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[12]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[13]  I. Cherednik On a method of constructing factorized S matrices in elementary functions , 1980 .

[14]  V. Fateev,et al.  MODEL FACTORIZED S MATRIX AND AN INTEGRABLE HEISENBERG CHAIN WITH SPIN 1. (IN RUSSIAN) , 1980 .

[15]  M. Karowski On the Bound State Problem in (1+1)-dimensional Field Theories , 1979 .