An analytically derived cooling schedule for simulated annealing

We present an analytically derived cooling schedule for a simulated annealing algorithm applicable to both continuous and discrete global optimization problems. An adaptive search algorithm is used to model an idealized version of simulated annealing which is viewed as consisting of a series of Boltzmann distributed sample points. Our choice of cooling schedule ensures linearity in the expected number of sample points needed to become arbitrarily close to a global optimum.

[1]  Mark Fielding,et al.  Simulated Annealing With An Optimal Fixed Temperature , 2000, SIAM J. Optim..

[2]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[3]  Marco Locatelli,et al.  Convergence of a Simulated Annealing Algorithm for Continuous Global Optimization , 2000, J. Glob. Optim..

[4]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[5]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[6]  Martin Pincus,et al.  Letter to the Editor - -A Closed Form Solution of Certain Programming Problems , 1968, Oper. Res..

[7]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[10]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[11]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[12]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[13]  Ehl Emile Aarts,et al.  Simulated annealing : an introduction , 1989 .

[14]  M. Locatelli Simulated Annealing Algorithms for Continuous Global Optimization: Convergence Conditions , 2000 .

[15]  Zelda B. Zabinsky,et al.  Global optimization of composite laminates using improving hit and run , 1992 .

[16]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[17]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[18]  Robert L. Smith,et al.  Simulated Annealing and Adaptive Search in Global Optimization , 1994, Probability in the Engineering and Informational Sciences.

[19]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[20]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[23]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[24]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.