Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report

The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FAST"TM"s final product for the ARM.

[1]  J. Blum,et al.  Thermophysical properties of near-Earth asteroid (341843) 2008 EV5 from WISE data , 2013, 1310.6715.

[2]  D. A. Oszkiewicz,et al.  Asteroid taxonomic signatures from photometric phase curves , 2012, 1202.2270.

[3]  S. Ghabezloo Micromechanical analysis of the effect of porosity on the thermal expansion coefficient of heterogeneous porous materials , 2012 .

[4]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[5]  O. Barnouin,et al.  Block distributions on Itokawa , 2014 .

[6]  M. Gaffey,et al.  Composition of near-Earth Asteroid 2008 EV5: Potential target for robotic and human exploration , 2012, 1209.1207.

[7]  S. Debei,et al.  Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .

[8]  R. Gaskell,et al.  Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter , 2008 .

[9]  P. Thomas,et al.  Seismic resurfacing by a single impact on the asteroid 433 Eros , 2005, Nature.

[10]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[11]  Daniel J. Scheeres,et al.  The strength of regolith and rubble pile asteroids , 2013, 1306.1622.

[12]  Chunlai Li,et al.  The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2 , 2013, Scientific Reports.

[13]  Hajime Yano,et al.  Regolith Migration and Sorting on Asteroid Itokawa , 2007, Science.

[14]  K. Tsiganis,et al.  Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower , 2010 .

[15]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[16]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[17]  Resistance forces during boulder extraction from an asteroid , 2016 .

[18]  Kentaro Uesugi,et al.  Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith , 2011, Science.

[19]  Braja M. Das,et al.  Principles of Geotechnical Engineering , 2021 .

[20]  I. Belskaya,et al.  Opposition effect of dark asteroids: diversity and albedo dependence , 2010 .

[21]  T. B. Spahr,et al.  ExploreNEOs. V. AVERAGE ALBEDO BY TAXONOMIC COMPLEX IN THE NEAR-EARTH ASTEROID POPULATION , 2011 .

[22]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[23]  C. d'Aubigny,et al.  Photometric models of disk-integrated observations of the OSIRIS-REx target Asteroid (101955) Bennu , 2015 .

[24]  N. Izenberg,et al.  The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros , 2001, Nature.

[25]  D. Britt,et al.  Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers , 2006 .

[26]  Lance A. M. Benner,et al.  Radar Observations of Near-Earth and Main-Belt Asteroids , 2015 .

[27]  William K. Hartmann,et al.  Phobos: Regolith and ejecta blocks investigated with Mars Orbiter Camera images , 2000 .

[28]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[29]  P. N. Smith,et al.  Asteroidal catastrophic collisions simulated by hypervelocity impact experiments , 1986 .

[30]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[31]  H. Vosteen,et al.  Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock , 2003 .

[32]  H. Shipman Near-Earth Asteroids , 1989 .

[33]  S. Murchie,et al.  Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros , 2001, Nature.

[34]  J. Veverka,et al.  Phobos, Deimos, and the Moon: size and distribution of crater ejecta blocks , 1986 .

[35]  Leslie L. Karafiath,et al.  Effect of Ultrahigh Vacuum on the Friction between Metals and Granular Soils , 1969 .

[36]  M. Malin,et al.  Mathilde: Size, Shape, and Geology , 1999 .

[37]  Chunlai Li,et al.  The preliminary analysis of the 4179 Toutatis snapshots of the Chang’E-2 flyby , 2014 .

[38]  Brian Mason,et al.  The carbonaceous chondrites , 1963 .

[39]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[40]  J. Masiero,et al.  ASTEROID FAMILY IDENTIFICATION USING THE HIERARCHICAL CLUSTERING METHOD AND WISE/NEOWISE PHYSICAL PROPERTIES , 2013, 1305.1607.

[41]  A. Nakamura,et al.  A survey of possible impact structures on 25143 Itokawa , 2009 .

[42]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[43]  Bernd Schäfer,et al.  A systematic approach to reliably characterize soils based on Bevameter testing , 2011 .

[44]  M. Cintala,et al.  Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography , 1995 .

[45]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[46]  S. Murchie,et al.  Evaluating Small Body Landing Hazards Due to Blocks , 2014 .

[47]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of carbonaceous chondrites , 2011 .

[48]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[49]  R. Macke Survey Of Meteorite Physical Properties Density, Porosity And Magnetic Susceptibility , 2010 .

[50]  Nancy S. Brodsky,et al.  Thermal expansion, thermal conductivity, and heat capacity measurements at Yucca Mountain, Nevada , 1997 .

[51]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[52]  Paul Mann,et al.  Chelyabinsk meteorite explains unusual spectral properties of Baptistina Asteroid Family , 2014, 1404.6666.

[53]  D. Scheeres,et al.  The role of cohesive forces in particle launching on the Moon and asteroids , 2011 .

[54]  A. Nakamura,et al.  Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa , 2008 .

[55]  I. Sevostianov On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity , 2012 .

[56]  D. Britt,et al.  Enstatite chondrite density, magnetic susceptibility, and porosity , 2010 .

[57]  Daniel J. Scheeres,et al.  Dynamics of levitating dust particles near asteroids and the Moon , 2013 .

[58]  D. Britt,et al.  Stony meteorite thermal properties and their relationship with meteorite chemical and physical states , 2012 .

[59]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of achondritic meteorites , 2011 .

[60]  M. Broz,et al.  Identification and Dynamical Properties of Asteroid Families , 2015, 1502.01628.

[61]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[62]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[63]  Takahide Mizuno,et al.  Mass and Local Topography Measurements of Itokawa by Hayabusa , 2006, Science.

[64]  J. Masiero,et al.  REVISING THE AGE FOR THE BAPTISTINA ASTEROID FAMILY USING WISE/NEOWISE DATA , 2012, 1209.1430.

[65]  Daniel J. Scheeres,et al.  Radar observations and the shape of near-Earth asteroid 2008 EV5 , 2011, 1101.3794.

[66]  Rafael A. Alemañ,et al.  The shapes of fragments from catastrophic disruption events: Effects of target shape and impact speed , 2014 .

[67]  G. J. Consolmagnoa,et al.  The significance of meteorite density and porosity , 2010 .

[68]  A. Nakamura,et al.  The shape distribution of boulders on Asteroid 25143 Itokawa: Comparison with fragments from impact experiments , 2010 .

[69]  Daniel J. Scheeres,et al.  Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations , 2013 .

[70]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[71]  A. Fujiwara,et al.  Expected shape distribution of asteroids obtained from laboratory impact experiments , 1978, Nature.

[72]  K. Zacny,et al.  Improved data reduction algorithm for the needle probe method applied to in-situ thermal conductivity measurements of lunar and planetary regoliths , 2014 .

[73]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[74]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[75]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[76]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[77]  P. Michel,et al.  TEMPERATURE HISTORY AND DYNAMICAL EVOLUTION OF (101955) 1999 RQ 36: A POTENTIAL TARGET FOR SAMPLE RETURN FROM A PRIMITIVE ASTEROID , 2011 .

[78]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[79]  P. N. Smith,et al.  The Properties of Fragments from Catastrophic Disruption Events , 1998 .

[80]  A. Tsuchiyama,et al.  Fragment shapes in impact experiments ranging from cratering to catastrophic disruption , 2016 .