Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates

We study the inverse boundary value problem for the Helmholtz equation using the Dirichlet-to-Neumann map at selected frequencies as the data. A conditional Lipschitz stability estimate for the inverse problem holds in the case of wavespeeds that are a linear combination of piecewise constant functions (following a domain partition) and gives a framework in which the scheme converges. The stability constant grows exponentially as the number of subdomains in the domain partition increases. We establish an order optimal upper bound for the stability constant. We eventually realize computational experiments to demonstrate the stability constant evolution for three dimensional wavespeed reconstruction.

[1]  Maarten V. de Hoop,et al.  Iterative reconstruction of the wave speed for the wave equation with bounded frequency boundary data , 2015, 1506.09014.

[2]  Rolando Magnanini,et al.  An inverse problem for the Helmholtz equation , 1985 .

[3]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[4]  Gunther Uhlmann,et al.  Increasing stability in an inverse problem for the acoustic equation , 2011, 1110.5145.

[5]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[6]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[7]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[8]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[9]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[10]  Maarten V. de Hoop,et al.  Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation , 2012, SIAM J. Math. Anal..

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[13]  Gang Bao,et al.  ERROR ESTIMATES FOR THE RECURSIVE LINEARIZATION OF INVERSE MEDIUM PROBLEMS , 2010 .

[14]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[15]  Christiaan C. Stolk,et al.  A mathematical framework for inverse wave problems in heterogeneous media , 2012, 1211.4656.

[16]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[17]  William W. Symes,et al.  The seismic reflection inverse problem , 2009 .

[18]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[19]  Ludovic Métivier,et al.  Full Waveform Inversion and the Truncated Newton Method , 2013, SIAM J. Sci. Comput..

[20]  Thorsten Hohage,et al.  New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications , 2001, SIAM J. Math. Anal..

[21]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[22]  R. Novikov,et al.  New global stability estimates for the Gel'fand–Calderon inverse problem , 2010, 1002.0153.

[23]  Peter Hähner,et al.  A Periodic Faddeev-Type Solution Operator , 1996 .

[24]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[25]  Thorsten Hohage,et al.  Logarithmic convergence rates of the iteratively regularized Gauss - Newton method for an inverse potential and an inverse scattering problem , 1997 .