A comparative first principles study of quantum well states in MgO barrier MTJs for STT-RAMs

Abstract This paper presents a comparative first principle study of tunneling magneto resistance (TMR), spin transfer torque (STT) and resistance area (RA) product of magnetic tunnel junctions (MTJ) having different quantum well states in middle of MgO barrier region. We report that such MTJs show enhanced STT and low RA product as compared to only MgO barrier MTJ with maintaining high TMR. Electronic structure of quantum well states adjudicates magnitude of TMR in MTJs. It is found that quantum well states having s-like character allow the transmission of Δ1 symmetry of Bloch wave whereas d-like character supports to the transmission of Δ2, Δ2′, and Δ5 symmetry. This increases transmission of spin polarized tunneling current with good spin filtering injection efficiency resulting in higher STT. It will produce less heat on applying critical switching current density (Jco), for current induced magnetization reversal by STT phenomenon without breakdown of the barrier.

[1]  J. M. Slaughter,et al.  Materials for Magnetoresistive Random Access Memory , 2009 .

[2]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[3]  Y. Huai,et al.  Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions , 2004, cond-mat/0504486.

[4]  Z. Li,et al.  Thermally assisted magnetization reversal in the presence of a spin-transfer torque , 2003 .

[5]  P. Levy,et al.  Ab initio calculations of magnetotransport for magnetic multilayers , 1999 .

[6]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[7]  N. Papanikolaou,et al.  Effects of resonant interface states on tunneling magnetoresistance , 2002 .

[8]  S. Yuasa,et al.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier , 2007 .

[9]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[10]  A. Fert,et al.  Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance , 2017, Nature Communications.

[11]  Nicholas Kioussis,et al.  Anomalous bias dependence of spin torque in magnetic tunnel junctions. , 2006, Physical review letters.

[12]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[13]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[14]  Paulo P. Freitas,et al.  Low frequency picotesla field detection using hybrid MgO based tunnel sensors , 2007 .

[15]  Jian Wang,et al.  Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C 60 device , 2000, cond-mat/0007176.

[16]  Bernard Dieny,et al.  GIANT MAGNETORESISTANCE IN SPIN-VALVE MULTILAYERS , 1994 .

[17]  Jonathan Z. Sun,et al.  Spin angular momentum transfer in current-perpendicular nanomagnetic junctions , 2006, IBM J. Res. Dev..

[18]  M. Stiles,et al.  Ab initio studies of the spin-transfer torque in magnetic tunnel junctions. , 2007, Physical review letters.

[19]  Spin-polarized current-induced torque in magnetic tunnel junctions , 2006 .

[20]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[21]  Hong Guo,et al.  First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers. , 2006, Physical review letters.

[22]  Dimitri D. Vvedensky,et al.  Layer Korringa-Kohn-Rostoker electronic structure code for bulk and interface geometries , 1990 .

[23]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[24]  Peter M. Levy,et al.  Quenching of magnetoresistance by hot electrons in magnetic tunnel junctions , 1997 .

[25]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  W. Butler,et al.  Effects of the iron-oxide layer in Fe-FeO-MgO-Fe tunneling junctions , 2003 .

[28]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[29]  M. Vieth,et al.  Conductance anomalies of CoFeB/MgO/CoFeB magnetic tunnel junctions , 2014 .

[30]  Willis,et al.  Quantum-well states and magnetic coupling between ferromagnets through a noble-metal layer. , 1993, Physical review. B, Condensed matter.

[31]  S. Sanvito,et al.  HfO2 and SiO2 as barriers in magnetic tunneling junctions , 2017 .

[32]  Xiaoguang Zhang,et al.  Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling , 1999 .

[33]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[34]  S. Gupta,et al.  Al embedded MgO barrier MTJ: A first principle study for application in fast and compact STT-MRAMs , 2017 .

[35]  F. Ebrahimi,et al.  Magnetic Tunnel Junction-Based Spintronic Logic Units Operated by Spin Transfer Torque , 2012, IEEE Transactions on Nanotechnology.

[36]  M. Hehn,et al.  Spin tunnelling phenomena in single-crystal magnetic tunnel junction systems , 2007 .

[37]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[38]  A. Kimel,et al.  Writing magnetic memory with ultrashort light pulses , 2019, Nature Reviews Materials.

[39]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[40]  Z. Diao,et al.  Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers , 2005, cond-mat/0510204.